

Membrane Transport of *n*-butane by a Temperature Gradient

Isabella Inzoli, Jean-Marc Simon, Sondre. S. Kvalvåg, Signe Kjelstrup

Deptartment of Chemistry

22.10.2009

Outline

Motivation

Method

System

Results

Conclusion

Acknowledgment

Project financially supported by The Center of Gas Technology NTNU/SINTEF and NFR.

Motivation

- Study thermal influence on transport
- Transport properties in micro porous materials
- Transport properties across surfaces
- Coupling of heat and mass transport (NET)

Model method

- Molecular dynamics simulations
 - Adsorption Langmuir
 - · Sampling in equilibrium
 - Deterministic
- Non-equilibrium Molecular dynamics simulations
 - Gradients in temperature and concentration
 - Steady-state transport

Newton's equations of motion

$$\mathbf{F}_i = -\frac{\partial V}{\partial \mathbf{r}_i}$$

System

- Perfect zeolite: silicalite-1 ([SiO₂]₉₆)
- Zig-zag and straight channels (5.5 Å diam.)
- Channels interconnected
- All-Atom model flexible grid

System cont'd

- n-butane
- United atoms model
- Stretching Bending Torsion

System cont'd

- Semi-infinite membrane (least image convention)
- Gas phases on both sides
- Different surface structures, and temperatures

Science and Technology

Surface

Interface transport equations

Describing the transport across the surface:

$$\Delta_{z,g}T = -\frac{1}{\lambda^s} \left(J_q^{\prime g} - q_b^{*s,r} J_b \right) \tag{1}$$

$$\frac{1}{T^z} \Delta_{z,g} \mu_{b,T} \left(T^z \right) = -\frac{q_b^{*s,r}}{T^z T^g} \Delta_{z,g} T - R_{bb}^{s,r} J_b \tag{2}$$

Derived from the entropy production at the interface.

[Inzoli, I., Kjelstrup, S., Bedeaux, D. and Simon, J.-M. *Microporous and Mesoporous Materials*, 125 (2009) 112–125.]

Equilibrium results

Langmuir adsorption

$$c_{pores} = \frac{c_{sat} \cdot K \cdot p}{1 + K \cdot p}$$

$$\Delta H_{ads}^0 = -54 {\pm} 1 \mathrm{kJ/mol}$$

 $c_{sat} \approx 1.75 \text{molec./nm}^3$

Surface excess

 Surface is rate-limiting for both heat and mass transfer (negative surface excess)

Surface resistance to mass transport

Not very dependent on gas pressure.

$$\frac{1}{T^{z}}\Delta_{z,g}\mu_{b,T}\left(T^{z}\right) = -\frac{q_{b}^{*s,r}}{T^{z}T^{g}}\Delta_{z,g}T - \frac{\mathbf{R}_{bb}^{s,r}}{\mathbf{R}_{bb}^{s}}J_{b}$$

Surface resistance to heat transport

Gas side dominates the resistance.

$$\Delta_{z,g}T = -\frac{1}{\lambda^s} \left(J_q^{\prime g} - q_b^{*s,r} J_b \right)$$

Coupling

- Large values for Heat of transfer, $q_{\scriptscriptstyle h}^{*s,r}$
- Significantly larger than for ΔH_{ads}^0

$$\Delta_{z,q} T = -\frac{1}{T^z} \Delta_{z,g} \mu_{b,T} (T^z) = -\frac{q_b^{*s,r}}{T^z T^g} \Delta_{z,g} T - R_{bb}^{s,r} J_b + \Delta_{z,q} T = -\frac{1}{\lambda^s} (J_q^{\prime g} - q_b^{*s,r} J_b)$$

Conclusion

- A membrane surface can well be rate-limiting to transport of heat and mass.
- Proper descriptions of heat and mass transport must take into account the coupling between the two.

Thank you for your attention!

Questions?

