Prediction of solid fluid phase equilibrium in gas processing at low temperature

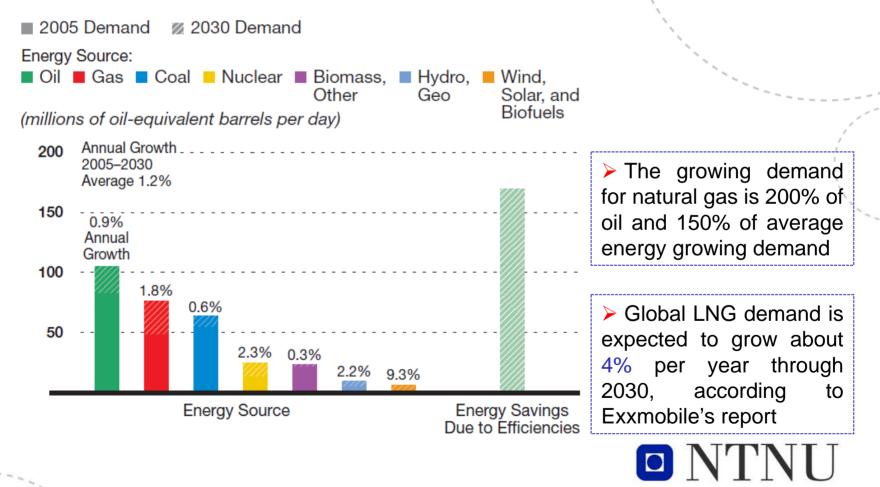
Longman Zhang Norwegian University of Science and Technology

Even Solbraa StatoilHydro, Research and Development

1st Trondheim Gas Technology Conference21-22nd October 2009Trondheim, Norway

Outline

Offshore natural gas liquefaction concepts


Solid blocking risk and solid behavior prediction

Conclusion

Offshore natural gas liquefaction concepts: Why?

Growth in Global Energy Demand

Innovation and Creativity

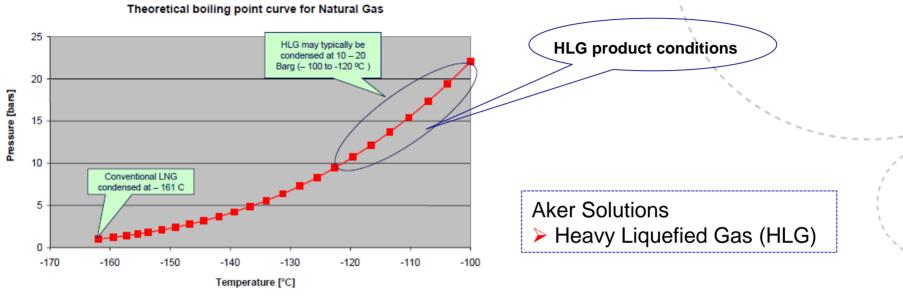
Source: Exxmobile 2008Summary Annual Report

Offshore natural gas liquefaction concepts: FLNG

Shell plans floating LNG platform in Australia: Prelude and Concerto Gasfields

3.5 MTPA LNG FEED had begun

Source: http://cn.reuters.com/article/companyNewsEng/idCNSYD36255920091012


FLEX LNG
1.7-2.0 MTPA LNG
Generic FEED completed 1Q 2009

Source: http://www.flexIng.com/publish_files/Presentation_Pareto_Oil_and_Offshore_Conference_September_2009.pdf



Offshore natural gas liquefaction concetps: HLG/PLNG

Source: Pål Rushfeldt, 18.02.2005, HLG – Heavy Liquefied Gas

Source: Scott D. Papka, ect. Pressurized LNG: A New Technology for Gas Commercialization, The 15th International Offshore and Polar Engineering Conference, Seul, Korea, June 19-24, 2005

Solid blocking risk in offshore gas processing

- CO₂, water, heavy hydrocarbons may form solid at low temperature and block passage
- Offshore requirement: compact, low weight, process reliability
- Floating-LNG: Offshore environment may deteriorate preprocessing (CO₂ removal) and heavy hydrocarbon extraction
- HLG/PLNG: The tolerance of CO₂ and heavy hydrocarbon in the process should be evaluated to make processing simple

It's important to predict the solid fluid phase equilibria to avoid solid blocking in process design

Innovation and Creativity

Solid behavior prediction: Fundamental

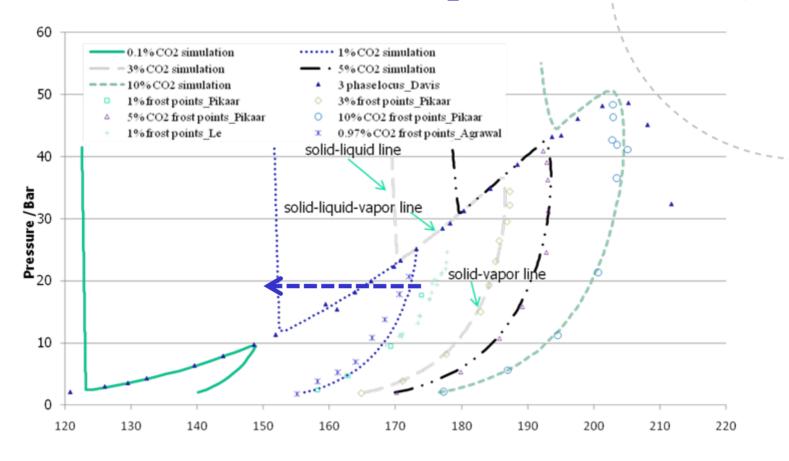
- **Fundamental:** Phase equilibrium thermodynamics
- Minimization of a thermodynamic state function: This work, fix P and T, Minimize Gibbs energy
- Algorithm: PT flash and stability analysis developed by Michelsen etc_[1].
- Implementation: Non-Equilibrium Simulator (NeqSim) developed by Solbraa^[2].

[1] Michelsen, M.L. and J.M. Mollerup, *Thermodynamic models: fundamentals and computational aspects.*[2] Solbraa, E., *Equilibrium and non-equilibrium thermodynamics of natural gas processing.*

Solid behavior prediction: Thermodynamic models

Basic requirement:
$$f_i^l = f_i^v = f_i^s$$
, $i = 1, 2, \dots, C$

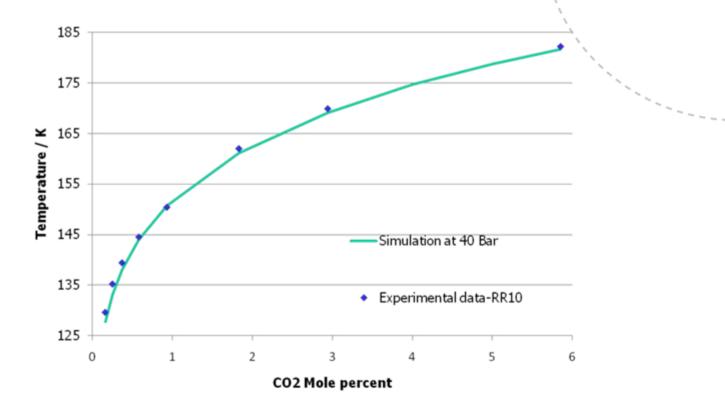
Vapor/Liquid phase:
Soave-Redlich-Kwong (SRK) EOS + Van der Waals mixing rule


• Solid Phase:
$$f_i^{Solid} = P_i^{SatSolid} \varphi_i^{SatVapor} e^{\frac{V_i^{Solid}}{RT}(P - P_i^{SatSolid})}$$

□ Vapor pressure: Clausius-Claperyon Equation

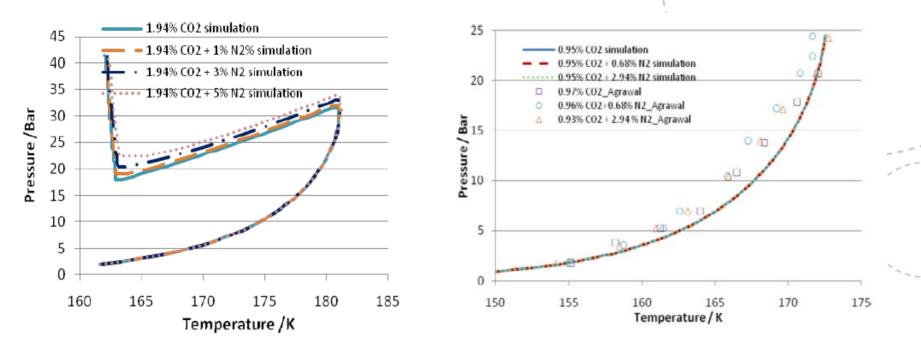
$$\ln\left(\frac{P_2}{P_1}\right) = \left(\frac{\Delta h}{R}\right) \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

Solid behavior prediction: CO₂+Methane PT diagram

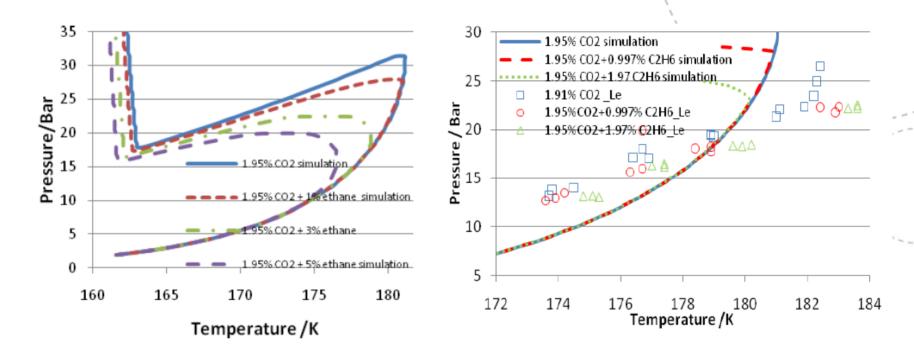


Temperature /K

Pitfall: Solid may melt during cooling down
Pressure has little effect on S-L equilbrium



Solid behavior prediction: CO₂ solubility in liquid CH₄


Solid behavior prediction: CO₂+CH₄+N₂

The presence of nitrogen will depress the carbon dioxide solubility in liquid methane

Solid behavior prediction: CO₂+CH₄+C₂H₆

The presence of ethane will enhance the carbon dioxide solubility in liquid methane

Solid behavior prediction: Multi-component system

Product condition			Status			Composition (mole basis %)					
	P(Bar)	T(K)	Phases	Phase	Density	CH ₄	C ₂ H ₆	C ₃ H ₈	C ₆ H ₆	CO ₂	N ₂
				fraction	(kg·m³)						
Feed	90	300	gas	100%	87	80	5	3	0.1	6	5.9
LNG	1	110	Gas	22.32%	2.12	76.49	0.01	-	-	-	23.50
			Liquid	71.61%	476	87.60	6.98	4.19	0.02	0.3	0.91
			Solid1	5.98%	1509	-	-	-	-	100	-
			Solid2	0.09%	1010	-	-	-	100	-	-
HLG	12	150	Gas	14.89%	21.7	77.99	0.13	-	-	0.1	21.78
			Liquid	79.91%	416	85.59	6.23	3.75	0.1	1.01	3.32
			Solid1	5.18%	1414	-	-	-	-	100	-
			Solid2	0.02%	988	-	-	-	100	-	-
HLG	20	165	Gas	23.41%	34.9	83.71	0.33	0.02	-	0.47	15.47
			Liquid	72.69%	397	83.10	6.77	4.12	0.14	2.74	3.13
			Solid	3.90%	1370	-	-	-	-	100	-

CO₂, C₆H₆ solid formation in multi-component system

> At 110 K and 150 K, carbon dioxide and benzene form solids together

- At 165 K, only carbon dioxide forms solid
- The solubility of carbon dioxide and benzene increase as T rises

The pretreatment in HLG may be simpler than LNG

Conclusion

- Solid blocking risk is one of the key issues in offshore natural gas liqufaction concepts
- This work predicts solid phase behavior in natural gas mixture at low temperature
- Thermodynamic models could be further evaluated, and systematic experiments should be carried out for offshore natural gas liquefaction design

Thank You for your attention!

Longman Zhang: Longman.Zhang@ntnu.no

