Electrochemical purification and compression of Hydrogen using polybenzimidazole (PBI) fuel cell technology

Magnus Thomassen, Edel Sheridan, Jannicke Kvello SINTEF Materials and Chemistry Sem Saelandsvei 12, NO-7495, Trondheim, Norway.

1st Trondheim Gas Technology Conference, 21-22nd October 2009

Brief introduction to PBI PEM fuel cell technology

- Working principle of electrochemical hydrogen separation and compression
- Experimental / Methodology
- Results
- Summary and Conclusions

PEM Fuel Cells – working principal

Polybenzimidazole - PBI Fuel Cell

- High thermal resistance T_a = 420°C
- High conductivity when doped with phosphoric acid (~6 x 10⁻² Scm⁻¹)
- Not reliant on liquid water for proton conduction
- Low rate of gas crossover
- Fuel cell operating temperature ~ 180°C
- Better CO tolerance than PEM Nafion fuel cell (3% CO)
- More than 20 000 h operation with reformate demonstrated

Concept of PBI H₂ pump

Upon application of a voltage the PBI fuel cell separates Hydrogen from a gas mixture through a proton exchange membrane

- Separation and compression of Hydrogen gas in one step
- Modular and Scalable
- Operation temperature: 150-200° C
- Membrane 100% proton selective
- CO-tolerance of at least 3% expected

Potential applications

- Increase H₂ yield and efficiency, reduced process complexity
 - No need for auxilliaries (e.g compressors and humidifiers)
- Reforming of natural gas methanol, biogas, landfill gas

WGS + H₂ Pump

Hydrogen separation for chemical processes, food production,etc

Experimental

- Operating temperatures
 - Tcell: 160°-200° C
- 2 Stoichiometric gas flow (50% hydrogen utilization)
- Feed gases:

- Hydrogen in Nitrogen (40-100% H₂)
- 75% H₂, 23.5% CO₂, 1.36 % CO, 0.36 % CH₄
- 44% H₂, 35% N₂, 21% CO₂, 100ppm CO

Experimental

- Polarisation (Current vs Potential) curves
 - Separation rate and energy consumption
- On line current interrupt measurements (membrane resistance)
- GC analysis of permeate gases
- Hydrogen cross over (back diffusion)

Results H₂ in Nitrogen

Results – Reformate gases

Results - Effect of Temperature

Maximum operational temperature 200°C

Optimal temperature 180°C

Results – Transient behaviour

Hydrogen separation is directly related to the applied current The hydrogen flux will stabilise 0.14 20.0 at new level within seconds 0.12 16.0 after applying a current step min_1 0.10 H2 flow rate Cell Voltage / V 12.0 Cell Voltage H₂ flow rate / mL 0.08 0.06 8.0 0.04 Precise monitoring and control 4.0 0.02 of hydrogen flow rate 0.00 0.0 800 820 880 900 840 860 Time / s

Results – Selectivity

 Feed gas: 75% H₂, 	Current density (Acm ⁻²)	Cathode outlet CO ₂ concentration (%)	Reduction in CO₂ concentration (%)
 23,5% CO₂, 1,36 % CO 0.36 % CH₄ 	0.5	0.45 ± 0.05	98
	1.0	0.23 ± 0.09	99
	1.5	0.12 ± 0.04	99.5
 Hydrogen permeability 0.02 Nm³ m⁻² h⁻¹ bar⁻¹ 	Current density (Acm ⁻²)	Cathode outlet CO concentration (%)	Reduction in CO concentration (%)
$\sim 0.5\%$ av sep. capacity	0.5	$\textbf{0.025} \pm \textbf{0.05}$	98
	1.0	$\boldsymbol{0.012 \pm 0.02}$	99
	1.5	$\boldsymbol{0.011 \pm 0.02}$	99

. . . .

Results – Compression

- Hydrogen compression to 0.6 barg results in practically no increase in energy consumption
- Compression up to 2 barg performed.
 - Catastrophic membrane failure in between carbon electrode and gasket
- Alternative membrane support/current collector structure will probably increase compression ability.

Summary

- The PBI hydrogen pump can separate and compress hydrogen from different gas mixtures
 - Energy efficiency of 80-90% (LHV)
 - Separation capacity of ~ 5-7 Nm³ m⁻² h⁻¹
 - High CO tolerance (1.5 % CO demonstrated)
 - Can operate on dry gas

(increased efficiency with 10-20 vol% water)

- Compressed to 2 barg upon demonstration, but possible to have higher differential pressure across the membrane with modification
- Can provide a finely controlled stream of Hydrogen gas at a selected pressure (∆p_{H2} 0-10 bar)

Thank you for your attention

Resultater - Kostnadsestimat

Case:

- Hydrogen fra SINTEFs Nanokarbon plasmaprosess
- 15 mill Nm³/år, 20% H₂ i He
- Elektrisitetsforbruk
 - 0.45 kWh / Nm³ 0.6kWh / Nm³
- Kapitalkostnader
 - 2500 € / m² membranareal
 - 50000 h levetid (ca 5 år)
- Separasjonskapasitet:
 - 5 Nm³ m⁻² h⁻¹

PPM process; CNT-production from CH₄

Plasma gas: He

Resultater - Kostnadsestimat

