Synthesis Gas from Methane by using Plasma Assisted GlidArc Catalytic Partial Oxidation Reactor

> Muhammad Hamid Rafiq Farshid Owrang Johan.E.Hustad

Department of Energy and Process Engineering Norwegian University of Science and Technology

1st Trondheim Gas Technology Conference 21-22nd October 2009

Out line of Presentation

🛛 Aim

Introduction

Materials and Methods

Results and Discussion

Conclusions

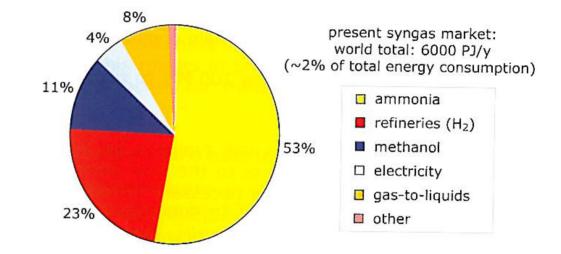
INTRODUCTION

MATERIALS AND METHODS

RESULTS AND DISCUSSION

CONCLUSIONS

Aim of this study is to convert 2.64g/min of methane to syngas by using normal air and enriched air $(N_2/O_2=60/40)$ for a single tube cobalt based Fischer-Tropsch reactor with special emphasis on H_2/CO Ratio.


INTRODUCTION

MATERIALS AND METHODS

RESULTS AND DISCUSSION

CONCLUSIONS

WORLD SYNGAS MARKET

INTRODUCTION

MATERIALS AND METHODS

RESULTS AND DISCUSSION

CONCLUSIONS

SYNTHESIS GAS PRODUCTION PROCESSES

Steam Reforming (SMR)

 $CH_4 + H_2O \rightarrow CO + 3H_2$

$$\Delta H_{298}^0 = 206 \frac{KJ}{mole}$$

Method of producing hydrogen in the pressence of Ni Catalyst.

Autothermal Reforming (ATR)

Uses oxygen and carbon dioxide or steam in a reaction with methane to form syngas.

 $2CH_4 + O_2 + CO_2 \rightarrow 3H_2 + 3CO + H_2O + \text{Heat}$

 $2CH_4 + O_2 + H_2O \rightarrow 5H_2 + 2CO$

The advantage of ATR is that the H_2 /CO ratio can be varied, this is particularly useful for producing certain second generation biofuels.

Partial Oxidation (POX)

Combusting substoichiometric fuel-air mixture in a reformer to produce hydrogen-rich syngas.

 $CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$

$$\Delta H_{298}^0 = -38 \frac{KJ}{mole}$$

Dry Reforming or Combined Dry and Steam Reforming

Production of hydrogen from carbon dioxide reforming of methane becomes more attractive way to utilize carbondioxide.

L

 $CH_4 + CO_2 \rightarrow 2CO + 2H_2$

$$\Delta H_{298}^0 = 247 \frac{KJ}{mole}$$

INTRODUCTION

MATERIALS AND METHODS

RESULTS AND DISCUSSION


CONCLUSIONS

GLIDARC PLASMA REFORMING

DEFINITION

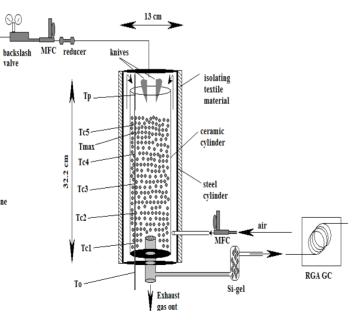
> An electrically assisted reforming of hydrocarbons where the electric energy is

dissipated directly in the processed gas through specific high-voltage discharges.

- ADVANTAGES
 - Electric energy consumption for non-catalytic reformer is less than 2% of the Lower Heating Value (LHV) power of produced syngas (H₂+CO).
 - Frequent start-up or drastic changes of the output flow rate and composition can be done in few seconds.
 - No soot formation.
 - Insensitive to sulphur content in the feed gas.

INTRODUCTION

MATERIALS AND METHODS


RESULTS AND DISCUSSION

Methane

CONCLUSIONS

EXPERIMENTAL SETUP

- Double mantle with inner silicon carbide (SiC) ceramic cylinder filled with Nickel based catalyst
- Reactor dimensions (L \times D) 32.2cm \times 5.9cm
 - Length of knives=6.1 cm
 - Distance b/w knives and catalyst top surface =1.3 cm

INTRODUCTION

MATERIALS AND METHODS

RESULTS AND DISCUSSION

CONCLUSIONS

EXPERIMENTAL SETUP

PLASMA

 \succ

 \geq

 \geq

- The electrical arc formed between the two high-voltage diverging electrodes (knives) is powered by a single phase transformer. The high-voltage (10kV, 60mA) self-maintained discharges strike directly across the methane and air .
 - The electrodes are not cooled so all the electrical energy is directly and totally transferred to the processed gas.

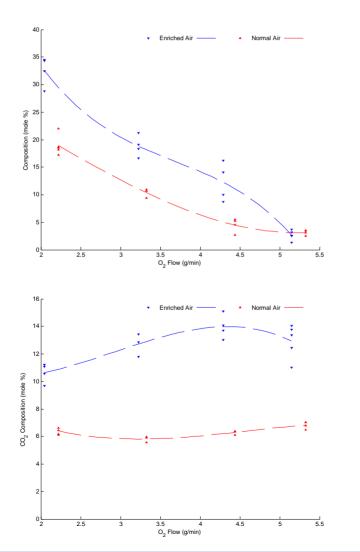
GAS CHROMATOGRAPH

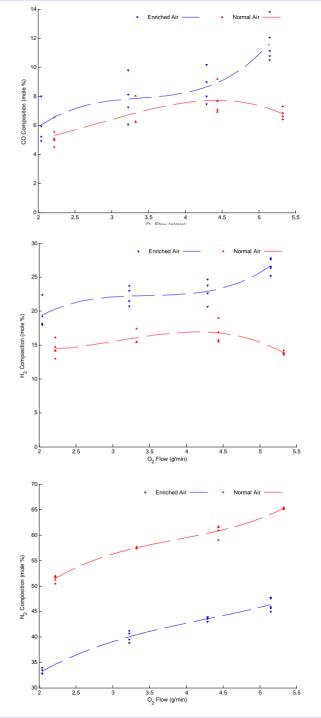
- Commercial Rapid Gas Analyzer (RGA) Gas Chromatograph (GC) are used to analyze the exhaust gas. Gas is directly injected into the steel loop of the RGA GC with a special gas syringe.
- The concentration of the components detected is estimated using standard gas and the amount of oxygen is measured by considering that the composition of air is 21% O_2 and 78% N_2 .

RUNNING THE GLIDARC REFORMER

- CH_4 Flow is kept Constant (i.e. 2.64 g/min).
- GlidArc is operated with different flow rate of normal air and enriched air to find the optimal H_2/CO ratio.

INTRODUCTION

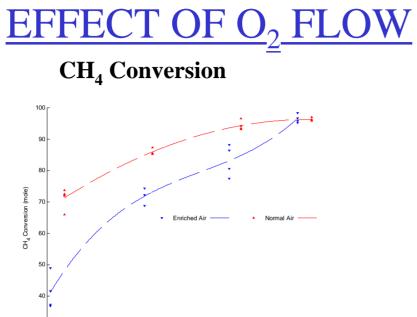

MATERIALS AND METHODS

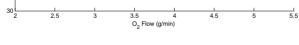

RESULTS AND DISCUSSION

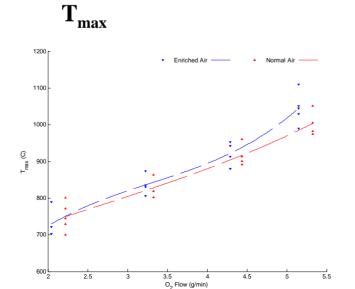
CONCLUSIONS

EFFECT OF O₂ FLOW

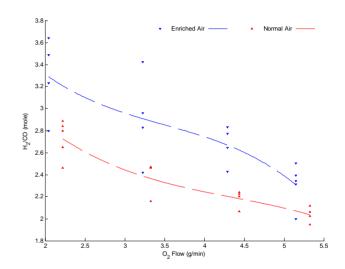
Product Gas Composition (Dry Basis)



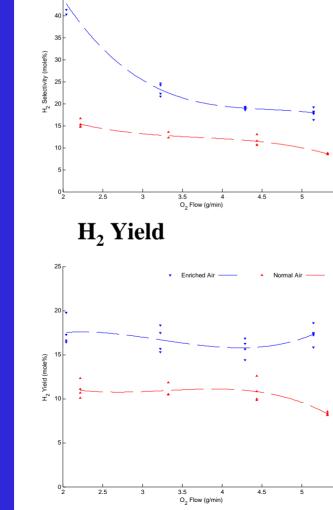

INTRODUCTION


MATERIALS AND METHODS

RESULTS AND DISCUSSION


CONCLUSIONS

H₂/CO Ratio


AIM

INTRODUCTION

MATERIALS AND METHODS

RESULTS AND DISCUSSION

CONCLUSIONS

H₂ Selectivity

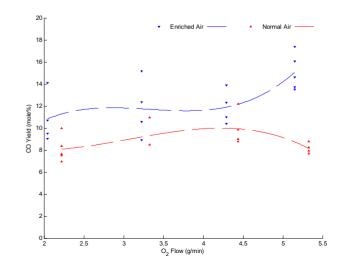
50

45

EFFECT OF O₂ FLOW

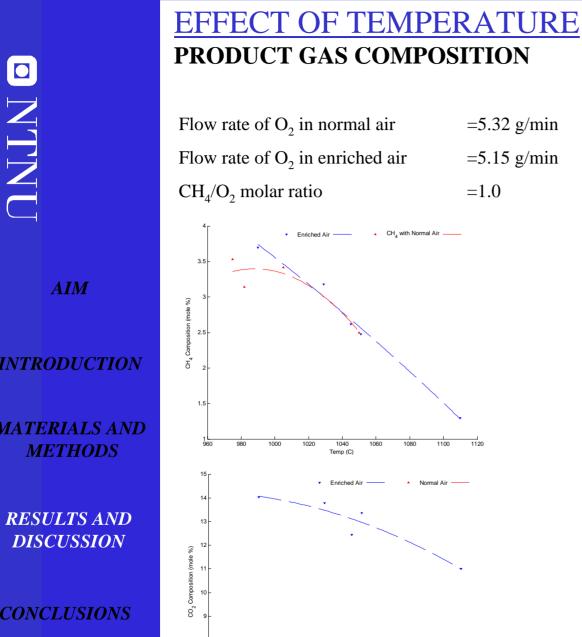
Normal A

5 5


5.5

Enriched Ai

CO Yield


NTNU

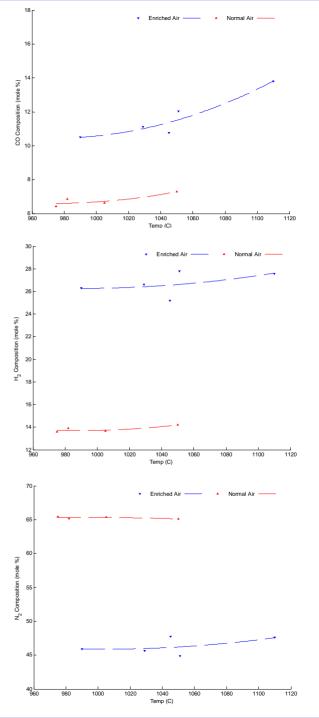
AIM

MATERIALS AND **METHODS**

RESULTS AND DISCUSSION

CONCLUSIONS

1000


1040

Temp (C)

1060

1080

1100

AIM

INTRODUCTION

MATERIALS AND METHODS

RESULTS AND DISCUSSION

CONCLUSIONS

EFFECT OF TEMPERATURE

Normal Air

Flow rate of O_2 in normal air	=5.32 g/min
Flow rate of O_2 in enriched air	=5.15 g/min
CH_4/O_2 molar ratio	=1.0

Enriched Air

1040

Temp (C)

1020

1000

1060

1080

1100

1120

CH₄ Conversion

100 r

99.5

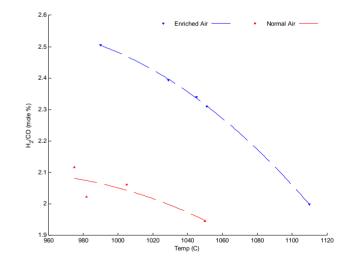
99

98.5

98

97.5

97 96.5

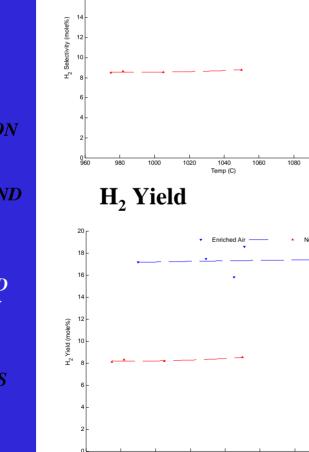

96

95.5

95 L 960

CH₄ Conversion (mole %)

H₂/CO Ratio



INTRODUCTION

MATERIALS AND METHODS

RESULTS AND DISCUSSION

CONCLUSIONS

980

1000

H₂ Selectivity

Enriched Air

1040

Temp (C)

1020

1060

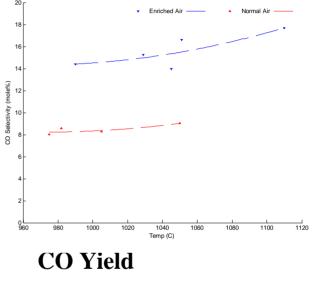
22

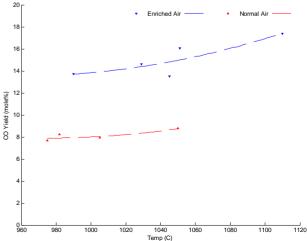
20

18

EFFECT OF TEMPERATURE

Normal Air


1100


1120

1120

1100

RESULTS

		Parameters	Normal Air	Enriched Air
N N		CH ₄ Flow (g/min)	2.64	2.64
		Air Flow (g/min)	22.68	11.9
	AIM	O ₂ Flow (g/min)	5.32	5.15
		Syngas Composition (Dry Vol %)		
		CH ₄	2.8	1.3
INTRODUCTI	PODUCTION	СО	7.1	13.8
	ODUCTION	CO_2	6.7	11
		H ₂	14.2	27.58
MATERIALS AND		N ₂	65.2	46.5
METHODS	LIHODS	H ₂ /CO Ratio (mole basis)	2	1.99
	SULTS AND SCUSSION	CH ₄ Conversion (mole basis)	96.5	98.36
		T _{max}	1050	1110
		H ₂ Selectivity (mole basis)	8.7	17.67
CON	CLUSIONS	CO Selectivity (mole basis)	8.5	17.68
		H ₂ Yield (mole basis)	8.5	17.38
		CO Yield (mole basis)	8.4	17.39

INTRODUCTION

MATERIALS AND METHODS

RESULTS AND DISCUSSION

CONCLUSIONS

CONCLUSIONS

- Parametric studies are achieved to determine reforming characteristics in the GlidArc reformer with both normal air and enriched air.
- CH₄ conversion and Tmax increases, whereas H_2/CO ratio and syngas selectivity decreases with the increase of O_2 flow for both normal and enriched air.
- □ The temperature along the reformer varies significantly at constant CH_4 and air flow, so the chemical composition of the syngas is strongly affected.
- CH₄ conversion increases, syngas selectivity and yield slightly increases, whereas H_2/CO ratio decreases with the increase of T_{max} at constant flow of both normal and enriched air.
- □ The GlidArc reactor is stabilized after several hours . The temperature of the catalyst, especially in the lower part of the reformer increases slowly by time.
 - The continuous electrical discharge is essential during the whole process. At higher CH_4 and air flows the outer mantle should be reconstructed to withstand higher temperature and pressure.

THANK YOU!!