

Fischer-Tropsch synthesis in a microstructured reactor

Rune Myrstad^a, S. Eri^b, P. Pfeifer^c, E. Rytter^b, A. Holmen^d

a SINTEF Materials and Chemistry

b StatoilHydro R&D, Research Centre

c Karlsruhe Institute of Technology

d Norwegian University of Science and Technology (NTNU)

Fischer Tropsch Process

Oryx GTL, Qatar/Sasol: 34.000 bpd Pearl GTL, Qatar/Shell (2011): 140.000 bpd

World Stranded Gas Resources

Stranded gas: Discovered but not developed reserves because too remote or too small to be economic viable

Utilization Options for Natural Gas

E. Brendeng, J. Hetland, Proceedings of NATO ARW "Security of Natural Gas Supply through Transit Countries", Tbilisi, 2003

.

Fischer-Tropsch Synthesis

Heat control

1. Reaction, very exothermic

 $CO + 2H_2 \rightarrow -CH_2 - + H_2O \quad \Delta H \approx -165 \text{ kJ/mol}$

2. Product distribution

Fischer-Tropsch Synthesis

Mass transfer 82 6.0Cobalt-time yield [mol CO/(mol Co · s)] -81 5.5 -80 selectivity [%] 79 5.0 78 77 ந் Õ 4.5 76 b 75 4.0^L 0 ___74 700 100 200 300 400 500 600 Catalyst particle size [µm]

Ø. Borg. et al, J. Catal 248 (2007)

Microstructured reactors

Large number of small, parallel channels in µm range

- Short distance to wall
- High surface/volume ratio

Advantages

- Enhanced heat and mass transfer properties
- Use of more active catalyst and/or operating at more severe conditions
 - Increased throughput
 - Smaller, more productive reactors
 - Improved productivity
- Scale-up risk minimized. "Scaling-out" /Parallelization

Microstructured reactors

Disadvantages?

- Catalyst deactivation and frequent reactor repacking, reactivation or reactor replacement
- Fouling and clogging of channels
- Malfunctioning

.

Catalyst loading in MSR's

- 1. Catalyst packed passages
- 2. Catalyst coated passages
- 3. Catalyst coated inserts
- 4. Entrained catalyst
- Advantages
 - Easier catalyst replacements
 - Reactor efficiency
- Main challenge
 - Pressure drop?
 - Maldistribution?

Catalyst Packed Passages

Catalyst Coated Passages

Entrained Catalyst

Catalyst Coated Insert

In-Passage Catalyst Options (www.heatric.com)

Microstructured reactor 2 cm³ stainless steel

Microstructured reactor

Fixed-bed reactor

- Conventional ¹/₂" stainless steel tube with 10 mm i.d.
- Clamped inside an aluminum block and heated by a Kanthal oven.
- 3 temperature measurements inside the reactor
- Regulated against the temperature in the aluminum block.

FTS studied in MSR and FBR at identical conditions (incl. catalyst particle size and catalyst weight)

Experimental setup

Materials and Chemistry

15

Catalysts

- Promoted 20 and 40 wt.% Co on γ -Al₂O₃
- Reactors loaded with powdered catalyst
 - MSR, undiluted catalyst
 - FBR, diluted 20:1 with SiC

Cat	Sieve fraction (µm)	Co (wt%)	Re (wt%)	Ni (wt%)	Dispersion (%)	Cobalt surface area (m ² g ⁻¹)
A	53-90	20	0.5	5	10.3	13.9
В	53-75	40	1.0	0	3.6	9.8

Pressure drop in MSR

(53–75 µm particle size, syngas 225°C)

Temperature profile in MSR (Methanol synthesis⁽¹⁾ simulated in COMSOL)

(1) H. Bakhtiary D. et al, in: Lecture 21st NAM Conference, San Francisco June 2009 (2009)

Temperature profile in MSR (Methanol synthesis⁽¹⁾)

Temperature measurements shows channel temperature identical to oil inlet temperature

(1) H. Bakhtiary D. et al, in: Lecture 21st NAM Conference, San Francisco June 2009 (2009)

Productivities and selectivities, Catalyst A

Reactor		MSR		FBR		
	non-di	luted ca	talyst	diluted catalyst		
Temperature (°C)	215	225	240	215	225	240
Pressure (bar)	20	20	20	20	20	20
$GHSV (mln g^{-1} h^{-1})$	14400	14400	20500	12300	14400	20500
CO-conv.(%)	51	72	83	48	69	80
CH ₄ -sel. (%)	9	9	12	9	9	12
rCO (mol $g^{-1} h^{-1}$)	0.10	0.15	0.24	0.08	0.14	0.23
C ₅₊ -sel. (%)	83	84	80	83	84	81
C_{5+} -prod. (g g ⁻¹ h ⁻¹)	1.2	1.7	2.6	1.0	1.6	2.6
Rel. deact. $rate^{(1)} (x10^{-3})$	1.2	2.9	4.9	1.0	6.4	8.7
TOS (h)	40	120	140	115	130	150

⁽¹⁾Relative deactivation rate at this time on stream, $\Delta r_{CO}/(r_{CO} \times \Delta t)$

.

MSR vs. FBR, 20Co0.5Re5Ni/Al₂O₃

(*) Time at constant conditions

-

Productivities and selectivities, Catalyst B

Reactor			FBR				
		non-d	diluted cat.				
Temperature (°C)	215	225	215	225	225	218	228
Pressure (bar)	20	20	30	30	30	20	20
$GHSV (mln g^{-1} h^{-1})$	16200	16200	16200	16200	12500	16200	16200
CO-conv.(%)	46	72	49	80	91	48	77
CH ₄ -sel. (%)	9	9	9	9	8	9	9
rCO (mol $g^{-1} h^{-1}$)	0.10	0.16	0.11	0.18	0.16	0.11	0.18
C ₅₊ -sel. (%)	84	84	84	86	87	85	85
C_{5+} -prod. (g g ⁻¹ h ⁻¹)	1.2	1.9	1.3	2.1	1.9	1.3	2.1
Rel. deact. $rate^{(1)} (x10^{-3})$	2.7	0.8	1.1	0.5	0.2	2.4	1.3
TOS (h)	65	115	165	210	270	70	100

 $^{(1)}Relative deactivation rate at this time on stream, <math display="inline">\Delta r_{CO}/(r_{CO} \; x \; \Delta t)$

.

MSR vs. FBR, 40Co1.0Re/Al₂O₃ P=20 bar,T=225°C,GHSV=16200 h⁻¹ (≈ 75% CO-conv.)

(*) Time at constant conditions

MSR, 40Co1.0Re/Al₂O₃ P=30 bar,T=225°C,GHSV=16200 h⁻¹ (\approx 80% CO-conv.)

(*) Time at constant conditions

Conclusions

- A multichannel microstructured packed bed reactor with excellent heat and mass transfer properties and low pressure drop is manufactured.
- FTS is performed with high activity Co/Al₂O₃ catalysts and the performance of the microstructured reactor fits well with results obtained with diluted catalysts in a lab-scale fixed-bed reactor.
- Due to the heat and mass transfer properties of the microstructured reactor, the microstructured reactor can be operated at severe conditions (high temperature, pressure, CO-conversion) without large temperature gradients and increased catalyst deactivation.

Acknowledgements

The authors acknowledge the support from the Research Council of Norway through the inGAP centre and StatoilHydro, Borealis, INEOS ChlorVinyls, SINTEF, NTNU and UiO

Thank you for your attention!

