Self-optimizing Control of a GTL process

Mehdi Panahi Sigurd Skogestad

1st Trondheim Gas Technology Conference 22.10.2009

NTNU Norwegian University of Science and Technology

Outline

Introduction

□ Conceptual design of a GTL process

Optimal operation and self-optimizing control

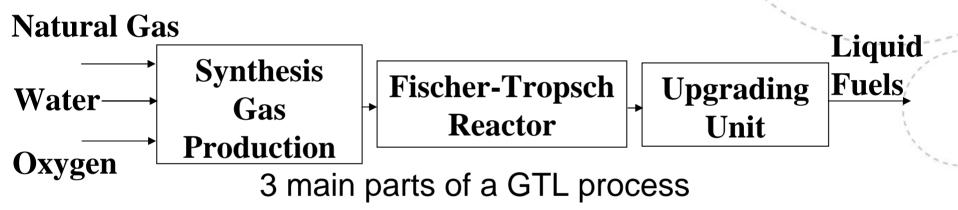
NTNU Norwegian University of Science and Technology

www.ntnu.no

Outline

Conceptual design of a GTL process

Optimal operation and self-optimizing control



NTNU Norwegian University of Science and Technology

www.ntnu.no

GTL is converting of natural gas to synthetic liquid fuels via Fischer-Tropsch (FT) reactions

Ideal Case: Thermodynamically possible but very far from being practical

$$nCH_4 + \frac{n}{2}O_2 \rightarrow (-CH_2 -)_n + nH_2O$$

Skogestad's procedure for plantwide control

Self-optimizing control

Mode I: maximize efficiency Mode II: maximize throughput

Self-optimizing control is when we can achieve acceptable loss with constant setpoint values for the controlled variables without the need to reoptimize the plant when disturbances occur

Skogestad, S., 2004, Control Structure Design for Complete Chemical Plants, Computers and Chemical Engineering, 28, 219-234

□ Conceptual design of a GTL process

Optimal operation and self-optimizing control

NTNU Norwegian University of Science and Technology

www.ntnu.no

Main reactions in GTL process SynGas unit

Auto Thermal Reforming (ATR) $CH_{4} + \frac{3}{2}O_{2} \Leftrightarrow CO + 2H_{2}O \qquad \Delta H = -519.32 \frac{kJ}{mol} \qquad \Delta G = -562.65 \frac{kJ}{mol}$ $CH_{4} + H_{2}O \Leftrightarrow CO + 3H_{2} \qquad \Delta H = +206.13 \frac{kJ}{mol} \qquad \Delta G = +151.65 \frac{kJ}{mol}$ $CO + H_{2}O \Leftrightarrow CO_{2} + H_{2} \qquad \Delta H = -41.39 \frac{kJ}{mol} \qquad \Delta G = -19.09 \frac{kJ}{mol}$

Desired $\frac{H_2}{CO}$ is 2-2.3 for FT reactor using Cobalt catalyst in a SBCR. ATR temperature is around 1000°C

FT reactions

 $nCO + 2nH_2 \rightarrow (-CH_2 -)_n + nH_2O \qquad \Delta H = -165 \frac{kJ}{mol}$

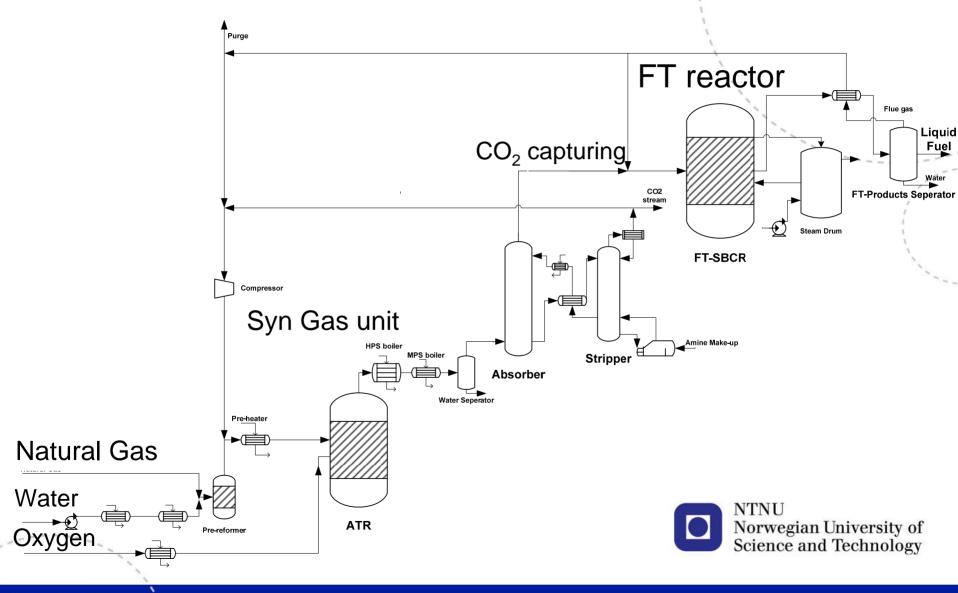
FT temperature is 220-230 °C

Yates, I. C. and C. N. Satterfield, 1991, Intrinsic Kinetics of the Fischer-Tropsch Synthesis on

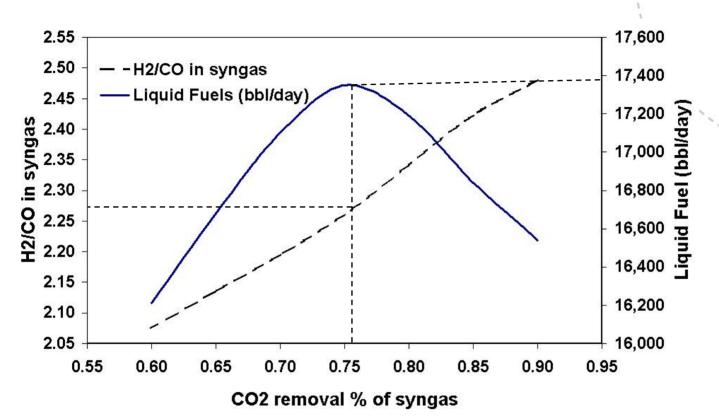
a Cobalt Catalyst, Energy & Fuels, 5, 168-173

M.Panahi, S.Skogestad 'Self-optimizing Control of a GTL process'

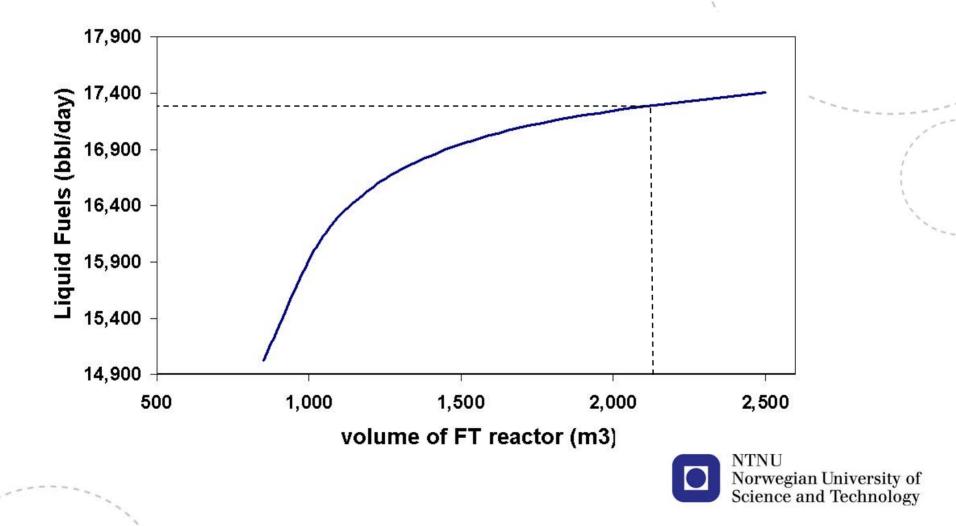
Norwegian University of


Science and Technology

Process design basis


- One train of the biggest current GTL plant
- > Equilibrium reactions in syngas unit
- Satterfield & Yates kinetic in FT reactor
- Industrial scale ratios of water and oxygen to natural
 - gas in feedstock and volume of the FT reactor

Resulting flowsheet of a GTL process

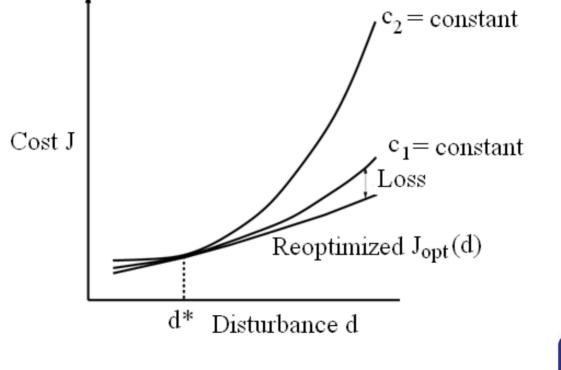

Process design

Effect of $%CO_2$ removal on (1) H₂/CO in syngas and (2) production of liquid fuels

Process design

Conceptual design of a GTL process

Optimal operation and self-optimizing control


NTNU Norwegian University of Science and Technology

www.ntnu.no

Skogestad's procedure for plantwide control

Self-optimizing control

Mode I: maximize efficiency (here natural gas is given)

Skogestad, S., I. Postlethwaite, 2005, Multivariable Feedback Control Analysis and Design, 2nd edition

NTNU Norwegian University of Science and Technology

www.ntnu.no

Self-optimizing control procedure

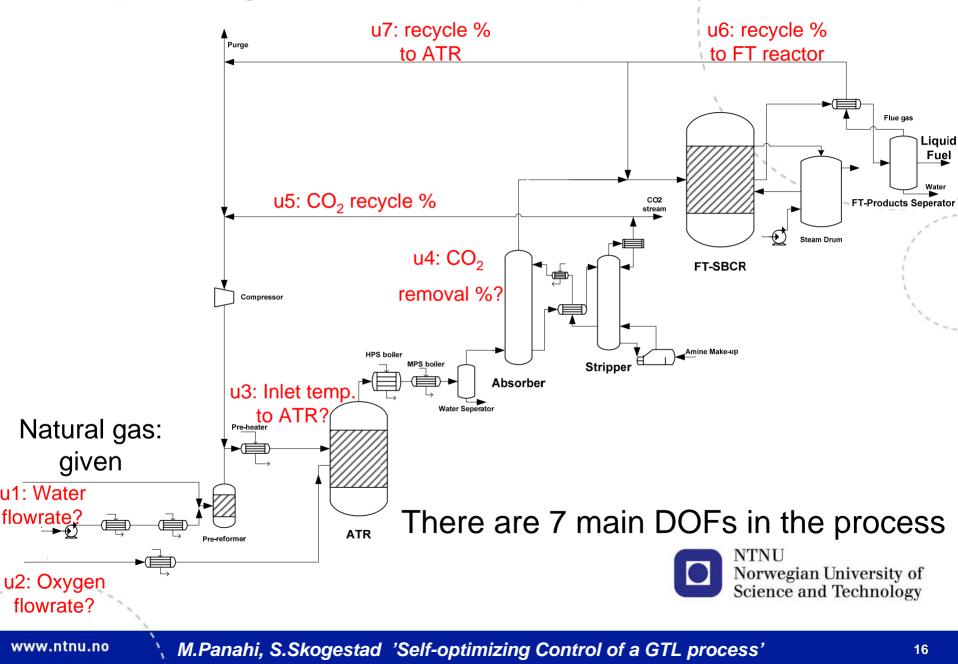
- Step 1: Define an objective function and constraints
- Step 2: Degrees of freedom (DOFs)
- Step3: Disturbances
- Step 4: Optimization (nominally and with disturbances)
- Step 5: Identification of controlled variables (CVs) for unconstrained DOFs
- Step 6: Evaluation of loss

Step 1: Define an objective function and constraints

Objective function: max. Liquids fuel production

Operational constraints that should be satisfied: (a) The H₂O/NG ratio should be larger than 0.3 to avoid

soot formation in ATR.


(b) The fired heater outlet temperature should not exceed 675°C due to limitations on construction material.

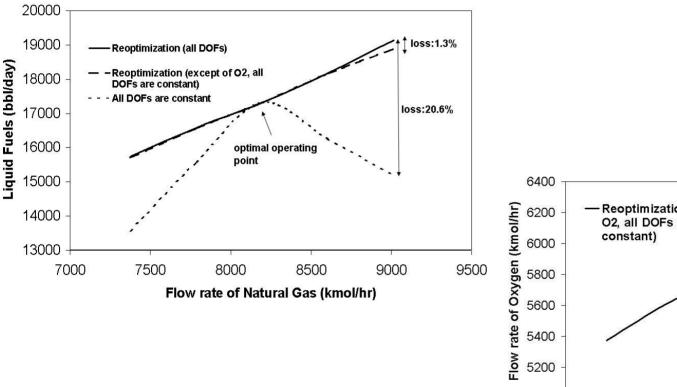
Aasberg-Petersen, K., T. S. Christensen, C. Stud Nielsen and I. Dybkjær, 2003, Recent developments in authothermal reforming and pre-reforming for synthesis gas production in GTL applications, Fuel Processing Technology, 83, 253-261

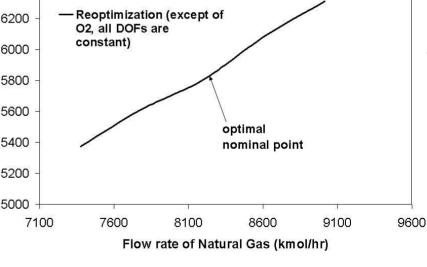
Bakkerud, P. K., 2005, Update on synthesis gas production for GTL, Catalysis Today, 106, 30-33

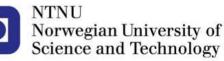
Step2: Degrees of freedom (DOFs)

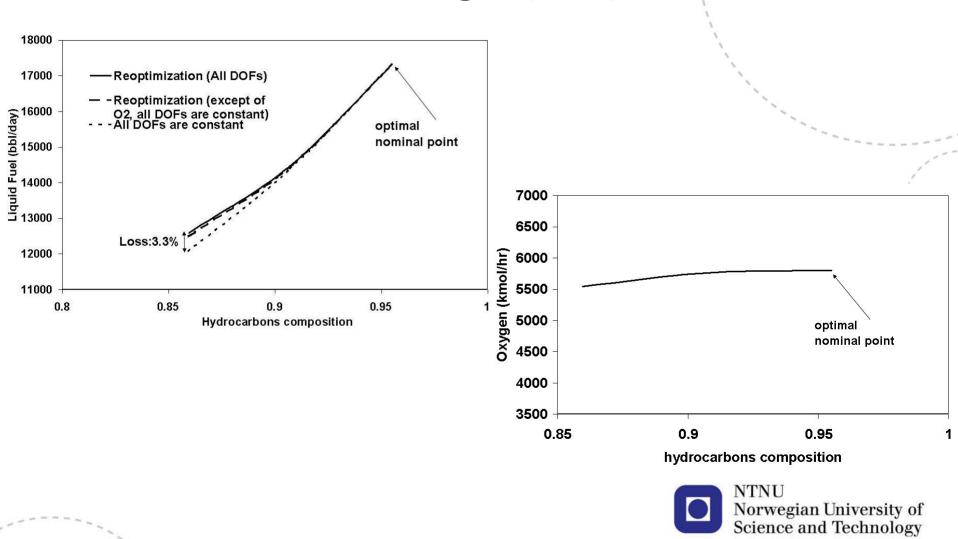
Step3: Disturbances

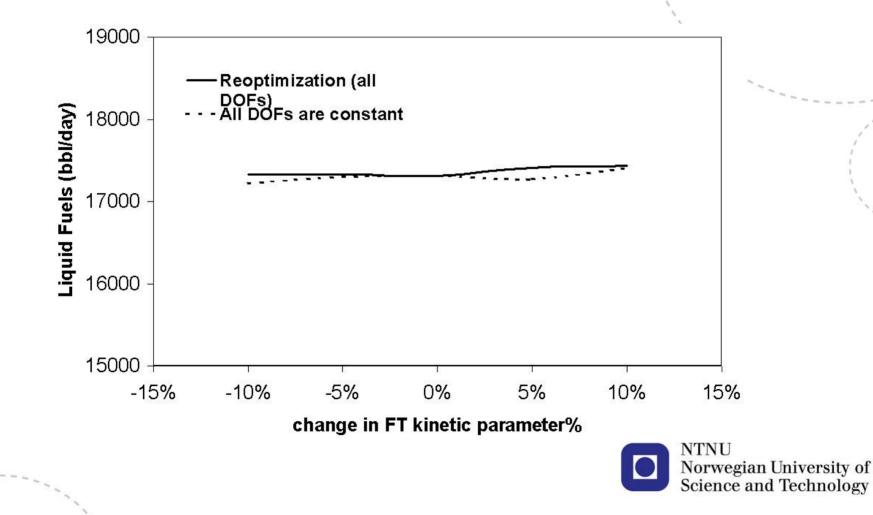
- 1. Flowrate of natural gas (±10%)
- 2. Composition of hydrocarbons in feed (-10%)
- 3. Change in FT kinetics (±10% in kinetic parameter a)
- 4. Change in inlet temperature to ATR (±25°C)



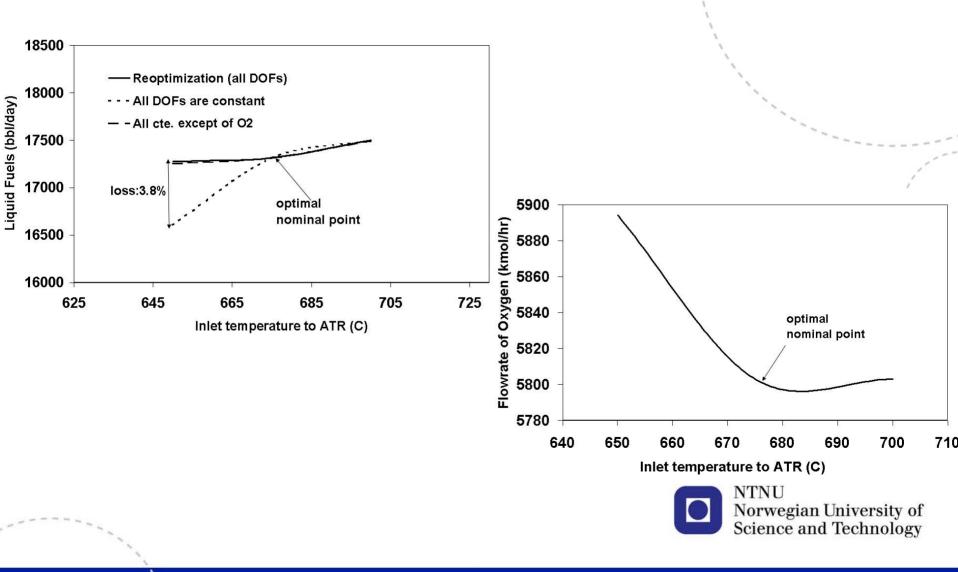

Step3: Reoptimization for Disturbances


- Reoptimization of the process in presence of different disturbances
- Only one active constraint (inlet temperature to ATR)
- 6 CVs associated with the 6 unconstrained DOFs
- Keep some of CVs in their optimal nominal points
- Ideal case: no need to reoptimize any of DOFs in presence of disturbances


First disturbance: Change in flowrate of natural gas (±10%)



Second disturbance: Change in composition of natural gas (-10%)



www.ntnu.no

Third disturbance: Change in FT kinetics (±10% in kinetic parameter a)

Fourth disturbance: Change in inlet temperature to ATR (±25°C)

Summary of loss for various disturbances

no.	Disturbance	Worst case of each disturbance		Loss (%), if all DOFs
		Change from nominal point	Loss (%)	are constant except of O_2 flowrate
1	Flowrate of natural gas	+10%	20.6	1.3
2	Inlet temperature to ATR	-25 °C	3.8	0.1
3	Hydrocarbons in the feed	-10%	3.3	0.8
4	Kinetic FT parameter a	+5%	0.8	-

It seems that we can always keep constant all the DOFs except of the O_2 flowrate.

We should also examine effect of implementation error in each controlled variables on objective function.

Implementation error of CVs

Implementation error: inaccuracy in control device

Effect of CV implementation error on objective function (loss)

CVs	Implementation error %	Loss %
Recycled flue gas % to ATR	-15	13.55
H ₂ O flowrate	-10	1.9
Recycled flue gas % to FT	-15	0.51
CO ₂ removal%	-5	0.21
Recycled CO ₂ % to ATR	-15	0.02

2 more unconstrained DOFs (flowrate of water and recycled flue gas % to ATR)

Conclusion of self-optimizing so far

Keep 4 DOFs constant in their optimal nominal points

- ➢ u3: Inlet temperature to ATR
- > u4: CO_2 removal %
- > u5: CO_2 recycle %
- ➢ u6: Recycle % to FT reactor
- 3 unconstrained DOFs
- > u1: H_2O flowrate
- \succ u2: O₂ flowrate
- ➢ u3: Recycle % to ATR

Candidate CVs: ATR temperature, H₂/CO in syngas etc.

Current work: Finding the best self-optimizing variables

Exact local method

I.J. Halvorsen, S. Skogestad, J.C. Morud and V. Alstad,

 $y = C^{y} u \perp C^{y} W d \perp W n$

NTNU Norwegian University of Science and Technology

<u>"Optimal selection of controlled variables", Ind. Eng. Chem. Res.</u>, 42 (14), 3273-3284 (2003)

Outline

Conceptual design of a GTL process

Optimal operation and self-optimizing control

NTNU Norwegian University of Science and Technology

www.ntnu.no

Summary

Conceptual design and simulation of a GTL process

✓ Optimal operation and self-optimizing control

✓ 7 DOFs (4 keep constants+3 unconstrained)

Thank you for your attention

NTNU Norwegian University of Science and Technology

www.ntnu.no