The Effect of Manufacturing Costs on the profitability of a Gas-to-Liquid Plant

1st Trondheim Gas Technology Conference

Ahmad Rafiee

Magne Hillestad

22.10.2009

Outline

- Introduction
- Process description
- Economical evaluation
- Scenario generation
- Sensitivity analysis
- Conclusions

Introduction

In the last decades, the conversion of natural gas to liquid fuels through the GTL technology, has shown to be an excellent alternative for the use of natural gas.

A typical GTL plant consists of three main units: 1) Syngas production unit, 2) Fischer-Tropsch synthesis unit, and 3) Upgrading unit.

We modelled a typical GTL plant using "UNISIM DESIGN" and performed an economical optimization to determine the optimal equipment sizes, operating conditions, and so on.

Process description

www.ntnu.no

4

Economical evaluation

1. Capital Cost Estimation

 $\log C_0 = K_1 + K_2 \log(A) + K_3 \log(A)^2$

 C_0 : Purcha sin g cos t for base conditions K_1, K_2, K_3 : Cons tan ts A: Capacity

$$C_{BM} = C_p^0 F_{BM}$$

Innovation and Creativity

2. Estimation of Manufacturing costs

Cost item	Values used in simulation	
1. Direct Costs		
A. Raw materials (C_{RM})		
B. Waste treatment (C_{WT})		
C. Utilities (C _{UT})		
• Fuel gas, oil, and/or coal		
Electric power		
• Steam (all pressures)		
Process water		
• Etc.		
D. Operating labor	C _{OL}	
E. Direct supervisory and clerical labor	$0.18 \mathrm{C}_{\mathrm{OL}}$	
F. Maintenance and repair	0.06 FCI	
G. Operating supplies	0.009 FCI	
H. Laboratory Charges	0.15 C _{OL}	
I. Patents and royalties	0.03 COM	
Total Direct Manufacturing Costs	$C_{RM}+C_{WT}+C_{UT}+1.33C_{OL}+0.03\ COM+0.069\ FCI$	
2. Fixed Costs		
A. Depreciation	0.1 FCI	
B. Local taxes and insurance	0.032 FCI	
C. Plant Overhead costs	0.708 C _{OL} +0.036 FCI	
Total Fixed Manufacturing Costs	0.708 Col+0.168 FCI	
3. General Expenses		
A. Administration costs	0.177 C _{OL} +0.009 FCI	
B. Distribution and selling costs	0.11 COM	
C. Research and development	0.05 COM	
Total General Manufacturing Costs	0.177 C _{0L} +0.009 FCI+0.16 COM	
		10000

 $COM = 0.3037 FCI + 2.73 C_{OL} + 1.23 (C_{UT} + C_{WT} + C_{RM})$

Innovation and Creativity

0

6

7

www.ntnu.no

The objective function is established as follow:

Profit = Incomes- Cost Of Manufacturing

And then this objective function has to be maximized to identify the optimal mode of operation for the plant.

 $Pay Back Time = \frac{fixed \ capital \ investment + start \ up \ \cos t}{profit \ after \ tax}$

Optimization results

For a 17000 bbl/day GTL plant we have the following results:

ATR inlet T (C)	700
Oxygen to Carbon ratio	0.55
Steam to Carbon ratio	0.5
ATR outlet T (C)	1050
CO2 removed (kmole/hr)	1300
FT reactor volume (m ³)	2000
FCI (billion \$)	1.282

www.ntnu.no

Product Distribution

	1
LPG (C3,C4)	21.22 %
Gasoline (C5-C8)	39.07 %
Naphtha (C9, C10)	11.45 %
Kerosene (C11-C13)	11.16 %
Gas oil (C14-C20)	11.69 %
Fuel Oil (C20+)	5.37 %

Carbon efficiency

Case A) GTL plant without CO2 removal unit

Case B) GTL plant with CO2 removal unit

¹²Scenario Generation

Objective: Investigating the effect of "natural gas price" and "product selling price" on the "pay back time":

Natural Gas Price (\$/1000 ft3)

Sensitivity Analysis

FCI= 1.282 b\$, NG Price=0.5 \$/1000 ft³, Product Selling Price= 77.92 \$/bbl

13

Conclusions

1. Optimization results show that removing CO2 from the synthesis gas increases the carbon efficiency of system.

For a cheap natural gas:

- 2. Pay back time ranges from 3 to 8 years.
- 3. Sensitivity analysis implies that pay back time is more sensitive to FCI and product selling price rather than natural gas price.

Thank you for your attention

www.ntnu.no