Til hovedinnhold
Norsk English

Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separations

Sammendrag

Poly(4-methyl-2-pentyne) (PMP) has been crosslinked using 4,4'-(hexafluoroisopropylidene) diphenyl azide (HFBAA) to improve its chemical and physical stability over time. Crosslinking PMP renders it insoluble in good solvents for the uncrosslinked polymer. Gas permeability and fractional free volume (FFV) decreased as crosslinker content increased, while gas sorption was unaffected by crosslinking. Therefore, the reduction in permeability upon crosslinking PMP was due to decrease in diffusion coefficient. Compared to the pure PMP membrane, the permeability of the crosslinked membrane is initially reduced for all gases tested due to the crosslinking. By adding nanoparticles (FS, TiO2), the permeability is again increased; permeability reductions due to crosslinking could be offset by adding nanoparticles to the membranes. Increased selectivity is documented for the gas pairs O-2/N-2, H-2/N-2, CO2/N-2, CO2/CH4 and H-2/CH4 using crosslinking and addition of nanoparticles. Crosslinking is successful in maintaining the permeability and selectivity of PMP membranes and PMP/filler nanocomposites over time. (c) 2008 Elsevier B.V. All rights reserved.

Kategori

Vitenskapelig artikkel

Språk

Engelsk

Forfatter(e)

Institusjon(er)

  • OsloMet - storbyuniversitetet
  • SINTEF AS
  • Norges teknisk-naturvitenskapelige universitet

År

2009

Publisert i

Journal of Membrane Science

ISSN

0376-7388

Forlag

Elsevier

Årgang

326

Hefte nr.

2

Side(r)

285 - 292

Vis denne publikasjonen hos Cristin