Here you find instance definitions and the best known solutions (to our knowledge) for the 100 tasks instances of Li & Lim's PDPTW benchmark problems. The version reported here has a hierarchical objective: 1) Minimize number of vehicles 2) Minimize total distance. Distance and time should be calculated with double precision, total distance results are rounded to two decimals. Exact methods typically use a total distance objective and use integral or low precision distance and time calculations. Hence, results are not directly comparable.
For instance definitions, click here.
The instance names in blue are hyperlinks to files with corresponding detailed solutions. They have all been checked by our solution checker. Note that many best known solutions do not have a reference to a peer reviewed publication. For these, important details on the solution algorithm, the computing time, and the experimental platform are probably not available. Further, there is no guarantee that the solutions have been produced without using external information, such as detailed solutions published earlier.
s: Detailed solution provided by SAM::OPTq: Detailed solution provided by Q
* The value 585.56 reported by Li & Lim and also here earlier does not seem compatible with the optimal solution value 591.2 reported in Røpke's PhD Thesis (see R below). We thank Richard Kelly at Monash University for pointing this out.
References
BVH - Bent, R. and Van Hentenryck. P. A: Two-Stage Hybrid Algorithm for Pickup and Delivery Vehicle Routing Problems with Time Windows. In Principles and Practice of Constraint Programming (2003).
Li & Lim - Li H. and A. Lim: A MetaHeuristic for the Pickup and Delivery Problem with Time Windows, In Proceedings of the 13th International Conference on Tools with Artificial Intelligence, Dallas, TX, USA, 2001.
Q - Quintiq. http://www.quintiq.com/optimization-world-records.aspx.
R - Ropke S. Heuristic and exact algorithms for vehicle routing problems. (2005) . Ph.D. thesis, Computer Science Department, University of Copenhagen (DIKU), Copenhagen
SAM::OPT - Hasle G., O. Kloster: Industrial Vehicle Routing Problems. Chapter in Hasle G., K-A Lie, E. Quak (eds): Geometric Modelling, Numerical Simulation, and Optimization. ISBN 978-3-540-68782-5, Springer 2007.
Published April 18, 2008