Solrun Johanne Vevelstad
Research Scientist- Name
- Solrun Johanne Vevelstad
- Title
- Research Scientist
- Phone
- 406 42 608
- Department
- Process Technology
- Office
- Trondheim
- Company
- SINTEF AS
This Task addresses the challenges related to solvent technology, with a focus on environmental issues.
We work to better understand the degradation of solvents by investigating which factors have the highest impact on the stability of amines (organic compound derived from ammonia), which are used to capture CO2 from various flue gas sources.
The work also helps to reduce operational- and investment cost by indicating amines with higher stability and developing technologies to control and monitor solvent stability. Higher stability of solvent means reduced cost, reduced emissions, improved lifetime of both material and solvent, improved safety for employees and reduced environmental impact.
As solvent degradation leads to increased capture cost and environmental issues, we study several different mitigation technologies. For example, a dissolved oxygen removal apparatus (DORA) was successfully tested at TRL-level 6 at PlantOne in Rotterdam in 2020. Typically, the concentrations of degradation compounds increase with increasing pilot-hours. However, with DORA in use, stable concentrations of degradation compounds were seen. Our preliminary assessment shows that DORA is an economically viable solution for controlling the degradation of CO2 capture solvents in a large-scale plant and could be applied independently or combined with a reclaimer unit, as part of the plant solvent management strategy.
The proof-of-principle of in-situ iron removal was also achieved in 2020. As iron is believed to have an essential role in accelerating solvents' degradation, removing it could significantly reduce solvent loss.
Finally, in 2020 we identified a salt that leads to significant inhibition of oxidative degradation of MEA-solvent when added in small concentrations (~2wt%). Several salts did show increased chemical stability of aqueous MEA under oxidative degradation. The addition of the best performing salt into MEA-solvent did not reduce the solvent's absorption capacity, nor did it increase the solvent viscosity or changed the thermal degradation behaviour. The results suggest that adding a small concentration of specific salt into MEA-solvent can reduce oxidative degradation without deranging neither CO2 solubility nor its mass transfer rates. This is excellent news. In 2020, the idea was taken from TRL0 to TRL3. The results will be shared with the CO2 capture community in a gold-open access journal publication.
In 2021, the work will continue, and the technology is taken to higher TRL-levels. We will run a campaign in the circulative solvent degradation rig to understand how the salt behaves in a circulative, temperature swing process. After that, we are ready to take the salt-concept to a pilot scale.
The technology developed in Task 2 will positively impact CCS' already positive effect on the environment and reduce CCS costs through developing more stable solvents with longer lifespans.
Throughout 2019 different factors influencing oxygen solubility have been investigated and several methods to measure oxygen solubility have been evaluated. Oxygen reduces the stability of the solvent and if oxygen solubility could be measured and if a correlation between oxygen solubility and degradation could be identified, a faster method to evaluate chemical stability of new solvents would be available. The limitations and opportunities with online oxygen sensors have been identified and recommendations for their applicability were made. Online oxygen sensors (analytical instrument measuring oxygen concentration) have shown to be very useful for stable solvents, while measurements of oxygen concentration in fast degrading solvents is challenging with all available measurement methods.
Oxygen from the flue gas is a contributor to decomposition of amine solvents, the decomposition mechanism is also more difficult to follow since the initial step involves radical reactions. We've performed lab scale experiments to demonstrate Dissolved oxygen removal apparatus' (DORA) ability to reduce oxygen concentration in the solvent. It was demonstrated that ammonia concentration is reduced when DORA is used, which indicate less decomposition of the solvent. The technology has been qualified for testing at a larger scale pilot campaign (1 kg CO2/hour) for a longer time period to take place in 2020.
Technologies like DORA is an example of both the cost and environment aspect of CCS. Our results thus far show that DORA will reduce solvent loss through mitigating solvent degradation. Less solvent loss means less environmental impact and costs saved, e.g. by not having to handle as much waste and consuming less solvents.
The Partial Least Square (PLS) model (statistical method used to evaluate data sets) developed in Task 2 in 2018, was validated in 2019 using samples from pilot projects around the world. It was proved that the PLS-model accurately predicts the concentrations of ethanolamine (MEA) and CO2 in the solvent, these components are important input to daily operation of the pilot plant. It can therefore potentially be used for online solvent analysis using Fourier-transform infrared spectroscopy (FT-IR) technology. Infrared spectroscopy exploits the fact that molecules absorb frequencies that are characteristic of their structure and functional groups give rise to characteristic bands both in terms of intensity and position (frequency). For gas samples, this is a technology that is used to monitor emissions from process industry overall the world.
One of the drawbacks for post-combustion CO2 capture with solvent technology is that absorption capacity of a solvent is reduced because of for example degradation. This mean that unwanted chemical reactions (degradation) occur in addition to the CO2 absorption and desorption reaction.
Different strategies are used to reduce unwanted reactions:
The main results from 2017:
Journal Publications
2021:
2019:
Conference Publications
2020:
2019:
2018:
Pop Science Articles
2019: