Full-scale CSS can provide the enormous amounts of energy needed by modern industrial societies without CO2 emissions to the atmosphere. But, there are important technical challenges related to power generation. This is what Task 5 Gas Turbines is looking to solve.

We aim to enable deployment on the Norwegian continental shelf through Oli & Gas rigs, and throughout Europe with gas turbine engines. The gas turbines must be operating stably, cleanly and efficiently.

The overall objective of the task is to assess the stability and operability of gas turbine combustion systems, utilizing the wide range of fuels and working fluids required by different CCS schemes. Ultimately, we will evaluate their impact on power generation, thermodynamic efficiency and pollutants emissions.

Our investigation of the technical challenges related to the power generation provides important insight to both Deployment Cases (DC).

Industry partners are/will be involved in the Task. Ansaldo Energia already participate directly to the work on gas turbines for baseload power generation (primarily related to DC2) while General Electric is considering to join NCCS if the scope of Task 5 can be extended to include topics relevant to industrial gas turbines (primarily related to DC1). Statoil has expressed interest in closely following the technical aspects of the work in view of the company's strategic plans for carbon-free, land-based and off-shore power generation.

Results 2017

The research activities started in mid-2017 at SINTEF and focused on two modelling topics:

  • High-definition numerical modelling of the reactive flow in Ansaldo's reheat combustion chamber
  • Tuning of the chemical kinetics model to efficiently represent combustion at reheat conditions.

The technical work on both topics was planned and performed in close collaboration with Ansaldo's corporate combustor R&D group with frequent mutual visits between Trondheim and Baden (Switzerland) and with the University of California San Diego (developers of the chemical kinetics model).

Results obtained from the Direct Numerical Simulation (DNS) of a scaled, and geometrically simplified, version of the reheat combustor operating on the target hydrogen-air reactive mixture have provided the first detailed quantification of the combustion characteristics (flame propagation vs auto-ignition) in the device.

On the academic side, the work at NTNU has been mainly related to the preparation/commissioning of the experimental rigs and to the selection and set up of the academic positions (Postdoc/PhD).

Among NCCS industrial partners, Statoil is actively following the research with particular interest in the development of hydrogen-fired gas turbines, providing input and feedback.

Task leader

Andrea Gruber

Senior Research Scientist
Name
Andrea Gruber
Title
Senior Research Scientist
Phone
905 52 134
Department
Thermal Energy
Office
Trondheim
Company
SINTEF Energi AS