Marie Bysveen
Chief Market Developer- Name
- Marie Bysveen
- Title
- Chief Market Developer
- Phone
- 922 86 113
- Department
- Thermal Energy
- Office
- Trondheim
- Company
- SINTEF Energi AS
Task 6 investigates how to best integrate the capture process in the CCS value chain. A generic methodology for post-combustion CO2 capture in waste to energy plants will be developed. The methodology will be used to redesign plants so they can support flexibility between heat (steam) and electricity output. The task will also develop a systematic approach to link solvent properties and cost reduction in end-of-pipe CO2 capture.
The first stage of the CCS value chain is to capture the CO2. In this Task we will investigate how to best integrate the capture process in the value chain.
We will be developing a generic methodology for waste to energy (WtE) plants with post-combustion CO2 capture. (This links the Task to Deployment Case 1). The methodology will be used to redesign plants so they can support flexibility between heat (steam) and electricity output.
The Task will develop a systematic approach to link solvent properties (read more about its relevance to CCS in Task 2) and cost reduction in end-of-pipe CO2 capture.
At least three reference cases for CO2 emission sources will be established in cooperation with industry partners. We will also establish contact with NETL and DOE to conduct joint research on methodologies for identifying breakthrough CO2 capture technologies.
CO2 capture from Waste-to-Energy (WtE) plants is receiving significant attention due to its potential contribution to negative emissions and its role within the context of sustainable cities.
Process integration of Calcium Looping (CaL) in a WtE plant was studied. Results showed the benefit of CaL process compared to MEA or other solvents for post-combustion capture for WtE plants, particularly with an emphasis on negative emissions.
Techno-economics of the WtE plant indicate that it is important to consider capture technologies with low energy penalties for capture with trade-off of having much higher CAPEX. While this is generally true of most post-combustion capture applications, it is emphasised in the case of CO2 capture from WtE plants.
The techno-economic analysis of the WtE plant have provided significant insights on the potential role of WtE plants with CCS being a competitive player in the Negative Emission Technology (NET) arena. This could help drive the business case for CCS in this sector.
Hybrid CO2 capture technologies can significantly reduce the cost of capture by integrating technologies that are best-in-class within a subset of the overall expected operating range. Pressure Swing Adsorption (PSA) is a suitable technology for bulk removal of CO2 while the liquefaction process is very good for CO2 purification. The PSA-Liquefaction hybrid process is a good option compared to PSA process for certain niche applications with sorbents that have high productivity and low selectivity. Identified PSA-Liquefaction process niche that has a potential to reduce the cost of post-combustion CO2 capture using adsorbents.
Three main activities have been undertaken. One of these was to develop reference cases that would provide a benchmark to identify the potential of technologies developed during the course of NCCS.
Two reference CCS chains were selected and defined in discussions with partners, assessed and evaluated in collaboration with Task 1:
For the NGCC reference plant, the widely used European Benchmarking Task Force (EBTF) reference case was updated with an H class gas turbine. The overall NGCC plant efficiency with CO2 capture was 54.5% compared to 49.5% in the EBTF reference case, and the efficiency penalty for CO2 capture was 7.5 %-points compared to 8.6 %-points in the EBTF case.
Another activity was to develop an energy integration model to provide insight on how to integrate CO2 capture to a waste-to-energy plant. The Klemetsrud plant will be used as a case study. A framework for energy optimization of the plant with CO2 capture was established.
Journal Publications
2020:
2018:
Conference Publications
2019: