Cryogenic Adsorption Equilibrium and Kinetics of CO₂ and CH₄ in zeolites

Carlos A. Grande and Richard Blom

SINTEF Materials and Chemistry

Forskningsveien 1, Oslo, Norway

Outline

- Scope of the problem
- Concept of Temperature Swing Adsorption process
- Adsorption equilibrium
- Adsorption kinetic (batch system)
- Fixed-bed experiments
- Conclusions
- Acknowledgments

Scope of the work:

Cryogenic distillation for upgrading of natural gas is a multicolumn for sequential removal of CO₂.

Berstad, Nekså and Anantharaman, Energy Procedia, 2012, 26, 41-48

Temperature Swing Adsorption design

Before breakthrough of adsorbed species, the adsorbent (column) is "heated" with a hot stream of gas.

Heating / cooling can be directly (as shown) or indirectly with a hot fluid. In this application, the "hot fluid" can be at ambient temperature.

TSA require "strong" adsorption at low temperature that can be reverted with temperature increase → **zeolites should be ideal materials**

Process design sequence:

Go back to the beginning:

No adsorption equilibrium data available in literature for other materials than carbon molecular sieve (not proper material for TSA applications).

NEED TO MEASURE FUNDAMENTAL PROPERTIES TO DESIGN THE PROCESS...

Experimental set-up:

- Measurements were carried out in an automated Belsorp Max unit (Japan).
- The measurements might take very long time
 - Diffusion at low temperatures can be "tortuous"
 - Diffusion through pores of similar molecular size.
- The amount of CO₂ adsorbed can be high:
 - Only P and T are used so error can increase
 - Full regeneration was difficult
- We learned how to deal with a lot of ice...
- Low pressure Isotherms were measured at:
 - 198 K
 - 208 K
 - 223 K
 - 248 K
 - 279 K (~water temperature in North Sea).

Zeolite 13X: adsorption equilibrium

Adsorption of CO₂ is much more preferential than CH₄. Isotherms are very steep making it difficult to desorb and fully regenerate.

However, adsorption of CH_4 is considerable. Since pores are 7.8 Å, CH_4 has "free way to adsorb", generating a lot of heat. This makes it impossible the utilization of this adsorbent for an "efficient" TSA application.

Zeolite 4A: adsorption equilibrium

Adsorption of CO₂ is preferential than CH₄. Loadings of both gases are smaller than in zeolite 13X.

Adsorption of CH₄ is considerable, but potentially limited by pore size (pores close to the size of the molecule).

Adsorption of CO₂ very steep → difficult regeneration but good for TSA purposes

Zeolite 4A: adsorption equilibrium

- The results at low pressure with the "high accuracy" equipment show some deviation at very low pressures.
- The results are unique of their kind and will soon be published in literature. Taking into account the reproducibility tests, measurements took over three months.

Zeolite 4A: diffusion at 198 K

Kinetic diameter 3.3 Å

- Carbon dioxide is fast to achieve adsorption equilibrium. Pressure goes very low increasing error of the first measurements.
- Each equilibrium point of methane takes at least 10000 seconds to be completed. Very delayed measurements.

0.25 0.2 0.2 0.15 0.15 0.05 0.05

500

400

0

0

0

100

200

300

Time [seconds]

0

1000

2000

Time [seconds]

3000

4000

Kinetic diameter 3.8 Å

5000

Dynamic measurements

Experiments were carried out in a new unit to measure breakthrough curves using a small amount of sample. All dead volumes are minimized using short distances and 1/16" tubes. Adsorption column:

Length: 97,5 mm; Diameter: 9,1 mm; Zeolite weight (humid): 3,7255 g

Before starting the experiments, helium was passing through the column and the mixture was passed through the bypass.

At t=0, we have changed the position of V1 so that the mixture goes through the column.

Mathematical model (dynamic)

System of partial differential equations

Material balances

Gas phase: $\frac{\partial}{\partial z} \left(\varepsilon D_{ax} C_{g,T} \frac{\partial y_i}{\partial z} \right) - \frac{\partial}{\partial z} \left(u_0 C_{g,i} \right) - \varepsilon \frac{\partial C_{g,i}}{\partial t} - (1 - \varepsilon) a_p k_f \left(C_{g,i} - C_{s,i} \right) = 0$

Macropore $\frac{\partial \langle C_{m,i} \rangle}{\partial t} = \frac{\Omega_m D_{p,i}}{R^2} (C_{s,i} - \langle C_{m,i} \rangle) - \frac{\rho_p}{\varepsilon} \frac{\partial \langle \overline{q}_i \rangle}{\partial t}$

Solid phase:

Micropore $\frac{\partial \overline{q}_i}{\partial t} = \frac{\Omega_c D_{c,i}}{r^2} (q_i^* - \overline{q}_i)$

Momentum balance

Ergun Equation: $-\frac{\partial P}{\partial z} = \frac{150 \,\mu (1-\varepsilon)^2}{\varepsilon^3 d^2} u_0 + \frac{1.75(1-\varepsilon) \rho_g}{\varepsilon^3 d} |u_0| u_0$

Ribeiro AM, Grande CA, Lopes FVS, Loureiro JM, Rodrigues AE. Chemical Engineering Science 2008:63:5258-5273.

Energy balances

Gas phase: $\frac{\partial}{\partial z} \left(\lambda \frac{\partial T_g}{\partial z} \right) - u_0 G_{g,\tau} C_p \frac{\partial T_g}{\partial z} + \varepsilon R_g T_g \frac{\partial G_{g,\tau}}{\partial t} - (1 - \varepsilon) a_p h_f (T_g - T_p) - \frac{4h_w}{d} (T_g - T_w) - \varepsilon C_{g,\tau} C_v \frac{\partial T_g}{\partial t} = 0$

Solid phase: $(1-\varepsilon) \left[\varepsilon_p \sum_{i=1}^n C_{m,i} C_{v,i} + \rho_p \sum_{i=1}^n \langle \overline{q}_i \rangle C_{v,ads,i} + \rho_p \hat{C}_{p,s} \right] \frac{\partial T_p}{\partial t} = (1-\varepsilon) \varepsilon_p R_g T_p \frac{\partial C_{m,T}}{\partial t} + \rho_b \sum_{i=1}^n (-\Delta H)_i \frac{\partial \langle \overline{q}_i \rangle}{\partial t} + (1-\varepsilon) a_p h_f (T_g - T_p)$

Column wall: $\rho_{w}\hat{C}_{p,w} \frac{\partial I_{w}}{\partial t} = \alpha_{w}h_{w}(T_{g} - T_{w}) - \alpha_{w\ell}U(T_{w} - T_{\infty})$ $\alpha_{w} = d_{wi}/[e(d_{wi} + e)]$ $\alpha_{w\ell} = 1/[(d_{wi} + e)\ln((d_{wi} + e)/d_{wi})]$

Adsorption isotherm model

Virial isotherm $P = \frac{q}{\kappa_m} \exp\left(\frac{2}{\varsigma}Aq + \frac{3}{2\varsigma^2}Bq^2 + \dots\right)$ $A = \sum_{m=0}^{\infty} \frac{A_m}{T^m}$ $B = \sum_{m=0}^{\infty} \frac{B_m}{T^m}$

Virial extended isotherm $P_i = \frac{q_i}{K_{ii}} \exp\left(\frac{2}{5} \sum_{k=1}^{N} A_{ij} q_j + \frac{3}{25^2} \sum_{k=1}^{N} \sum_{k=1}^{N} B_{ijk} q_j q_k\right) \quad A_{ij} = \frac{\left(A_i + A_j\right)}{2} \quad B_{ijk} = \frac{\left(B_i + B_j + B_k\right)}{3}$ isotherm

Van't Hoff equation $K_H = K_{\infty} \exp \left(\frac{-\Delta H}{R_a T} \right)$

Dynamic measurements: results

Experiments were performed at 204 K and with total pressure of 1 bar and 10 bar. Different flowrates were used. Here we show two examples.

Experiment at 1 bar, 195 ml/min feed flow. Temperature variation was negligible.

Mathematical model predicts the breakthrough curve with good accuracy.

Experiment at 10 bar, 263 ml/min feed flow. Temperature variation was 1.5 K.

Mathematical model predicts the breakthrough curve with acceptable accuracy.

Conclusions:

- Fundamental data for adsorption of methane and carbon dioxide was measured under cryogenic conditions.
- Methane adsorption in zeolite 13X is very fast and might generate intense heat if used in a TSA process which makes this adsorbent not desirable for this application.
- Adsorption data of CO₂ indicates that the desorption might have to be carried out at slightly high temperature than sea water.
- Zeolite 4A practically excludes adsorption of methane at these conditions which is very desirable to avoid internal recycles in a TSA process.

Acknowledgments:

■ This publication is based on the results from the research project "A Green Sea", performed under the Petromaks program. The author(s) acknowledge the partners: Statoil, Gassco, Petrobras and the Research Council of Norway (200455/S60) for their support.

