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Scope of the work: 

3 

Cryogenic distillation for upgrading of natural gas is a multi-

column for sequential removal of CO2.  

Berstad, Nekså and Anantharaman, Energy Procedia, 2012, 26, 41-48 

Question: can we 

replace this column by 

an adsorption process? 

 

Conditions:  

~1%CO2 (rest CH4) 

P = 40 bar 

T = -80ºC 
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Temperature Swing Adsorption design 
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Before breakthrough of adsorbed species, the adsorbent 

(column) is “heated” with a hot stream of gas.  

Heating / cooling can be directly (as shown) or indirectly with a hot fluid. 

In this application, the "hot fluid" can be at ambient temperature. 

TSA require "strong" adsorption at low temperature that can be reverted 

with temperature increase  zeolites should be ideal materials 
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Process design sequence: 

Select 

adsorbent

Adsorption 

properties

Calculate 

column 

diameter

Check fixed-

bed 

performance

Determine 

column 

number

Calculate 

step-times

Determine 

performance

Select TSA 

cycleSelection of adsorbent and 

TSA cycle are CRITICAL!!
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Go back to the beginning: 

Select 

adsorbent

Adsorption 

properties

Calculate 

column 

diameter

Check fixed-

bed 

performance

Determine 

column 

number

Calculate 

step-times

Determine 

performance

Select TSA 

cycleSelection of adsorbent and 

TSA cycle are CRITICAL!!

No adsorption equilibrium data available in literature for other materials 

than carbon molecular sieve (not proper material for TSA applications). 

 

NEED TO MEASURE FUNDAMENTAL PROPERTIES TO DESIGN THE 

PROCESS… 
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Experimental set-up: 
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 Measurements were carried out in an automated Belsorp Max unit (Japan). 

 The measurements might take very long time 
 Diffusion at low temperatures can be "tortuous" 

 Diffusion through pores of similar molecular size. 

 The amount of CO2 adsorbed can be high: 
 Only P and T are used so error can increase 

 Full regeneration was difficult 

 We learned how to deal with a lot of ice… 

 

 Low pressure Isotherms were measured at: 
 198 K 

 208 K 

 223 K 

 248 K 

 279 K (~water temperature in North Sea).  
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Zeolite 13X: adsorption equilibrium 
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Adsorption of CO2 is much more preferential than CH4. Isotherms are very 

steep making it difficult to desorb and fully regenerate. 

However, adsorption of CH4 is considerable. Since pores are 7.8 Å, CH4 

has "free way to adsorb", generating a lot of heat. This makes it 

impossible the utilization of this adsorbent for an "efficient" TSA 

application.  
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Zeolite 4A : adsorption equilibrium 
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Adsorption of CO2 is preferential than CH4. Loadings of both gases are 

smaller than in zeolite 13X.  

Adsorption of CH4 is considerable, but potentially limited by pore size 

(pores close to the size of the molecule).  

Adsorption of CO2 very steep  difficult regeneration but good for TSA 

purposes 
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 The results at low pressure with the "high accuracy" equipment show some 

deviation at very low pressures.  

 The results are unique of their kind and will soon be published in literature. 

Taking into account the reproducibility tests, measurements took over three 

months. 

Zeolite 4A : adsorption equilibrium 
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CO2 low-pressure "zoom" CH4 low-pressure "zoom" 
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 Carbon dioxide is fast to achieve adsorption equilibrium. Pressure goes very low 

increasing error of the first measurements. 

 Each equilibrium point of methane takes at least 10000 seconds to be 

completed. Very delayed measurements. 

Zeolite 4A: diffusion at 198 K 
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Dynamic measurements 
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Experiments were carried out in a new unit to measure breakthrough curves using a small 

amount of sample. All dead volumes are minimized using short distances and 1/16" tubes. 

Adsorption column:  

Length: 97,5 mm; Diameter: 9,1 mm; Zeolite weight (humid): 3,7255 g 

Before starting the experiments, helium was passing through the column and the mixture 

was passed through the bypass.  

At t=0, we have changed the position of V1 so that the mixture goes through the column. 

Simultaneously, we have closed V2 to verify helium changes with time.  

MFC 

MFC 

V1 

MS 

Exhaust 

He 

CH4 (~98.5%) 

CO2 (~1.5%) 

 

 

 

Cooler T 

V2 
BPR 
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Mathematical model (dynamic) 

Material balances
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 Ribeiro AM, Grande CA, Lopes FVS, Loureiro JM, Rodrigues AE. 

Chemical Engineering Science 2008;63:5258-5273.
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Dynamic measurements: results 
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Experiments were performed at 204 K and with total pressure of 1 bar and 10 bar. Different 

flowrates were used. Here we show two examples. 

Experiment at 1 bar, 195 ml/min feed flow. 

Temperature variation was negligible.  

Mathematical model predicts the 

breakthrough curve with good accuracy.  
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Experiment at 10 bar, 263 ml/min feed flow. 

Temperature variation was 1.5 K.  

Mathematical model predicts the 

breakthrough curve with acceptable 

accuracy.  
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Conclusions: 

 Fundamental data for adsorption of methane and carbon 

dioxide was measured under cryogenic conditions.  

 Methane adsorption in zeolite 13X is very fast and might 

generate intense heat if used in a TSA process which 

makes this adsorbent not desirable for this application.  

 Adsorption data of CO2 indicates that the desorption might 

have to be carried out at slightly high temperature than sea 

water. 

 Zeolite 4A practically excludes adsorption of methane at 

these conditions which is very desirable to avoid internal 

recycles in a TSA process.  
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