The MultiSingleCell in PEFC Durability Research

International Symposium on DIAGNOSTIC TOOLS FOR FUEL CELL TECHNOLOGIES 23rd-24th June 2009 Trondheim, Norway

Thomas Tingelöf, Sonja Auvinen and Jari Ihonen thomas.tingelof@vtt.fi

Contents

Key ideas of the MultiSingleCell (MSC) and cooling cascade

Design principal

- Flow splitting

Unit cell designs

Design for MEA testing

- Selected results from the MSC in MEA testing

Design for stainless steel and coating

- Selected results from the MSC in stainless steel and coating testing

Future development of the MSC concept

What is a Multisinglecell?

- A multisinglecell consists of number of stacked single fuel cells
- Isn't this a fuel cell stack? Yes, but...
 - The gas and cooling flows can be separated
 - Thermal insulation between cells
 →The cells can be individually
 disconnected from gas/water
 flows and electric load

Figure 1 Multisinglecell with 8 unit cells

VTT

The key ideas in Multisinglecell measurement setup

- One common test station and splitting of gases before cells
- Gases are dried after fuel cell using an array of heat exchangers
- "Precision flow resistances" (3-10 higher than flow resistance in the cells) splits the flows evenly
- Individual sampling of exhaust water (fluoride, corrosion products)
- The experiment history will be the same for all the samples
- The use of common thermostating liquid circuit and one load box with in fuel cell stacks
- The clamping pressure is the same in all cells

 \Rightarrow Capacity of a conventional measurement station is multiplied!

A principal setup for Multisinglecell measurements

• Water must be condensed before "precision flow resistances"!!

Figure 2 Principal setup of a multisinglecell and cooling cascade

Flow splitting

Figure 3 Flow splitting at 140 h with leak after cell 6

Figure 4 Flow splitting at 280 h

Cell design for MEA research

- A 25 cm² MSC has been designed for testing of screener MEAs
 - Single serpentine flow channels for gas and cooling water
 - Internal, or external, manifolding of inlet gases
 - Internal manifolding of cooling liquid
 - Viton rubber sheets between each cell

Figure 5 Cell design for screener MEAs

Example of MSC in MEA research – Potential cycling

Table 1 Experimental parameters potential cycling				
MEA	Paxitech S25-3L (0.6/0.6 mg Pt cm-2)			
GDL	Carbel® CL (compressed to 200 µm)			
Cell hardware	8 x In-House 25 cm ² single serpentine			
T _{cell}	75 °C	Air flow rate	5.2 (n)lpm	
RH	100%	H ₂ flow rate	2.6 (n)lpm	

Table 2 Load box set-up			
Cell nr	Potential level A [V]	Potential Level B [V]	
Cell 1	0.975	0.700	Slew rate [V/s] 20 Frequency [Hz] 0.2
Cell 2	0.875		
Cell 3	0.850	0.700	
Cell 4	0.650		
Cell 5	0.925	0 700	Duty [%] 50
Cell 6	0.825	0.700	
Cell 7	0.750	-	
Cell 8	0.750		

Table 3 Evaluated parameters		
Polarization curves	Galvanostatic	
Fluoride Emissions	Orion ionplus® fluoride electrode	
Post-mortem SEM	Not yet completed!	

Performance decrease during potential cycling with Paxitech MEAs

A clear performance decrease at *low currents* as a function of upper potential cycling limit and time, indicates lower catalytic activity!

Fluoride emission rates during potential cycling with Paxitech MEAs

Fluoride emission rates follow same trend as cell voltage. Also here the cells cycled to 0.825 V are in the same range as the reference cell.

Cell design for stainless steel and coating research

Figure 10 Principal setup of multisinglecell for stainless steel and coating testing

Figure 11 Cell design for stainless steel and coating testing

Example of MSC in stainless steel and coating research

Table 4 Experimental parameters				
MEA	Gore PRIMEA® 5640 (0.6/0.1 mg Pt cm ⁻²)			
GDL	Carbel® CL (Compressed to 200 μ m)			
Cell hardware	8 x In-House 10 cm ² single serpentine			
Test duration	650 h	Current density	0.05 A cm ⁻²	
T _{cell}	80 °C	Air flow rate	0.6 (n)lpm	
RH	100%	H_2 flow rate	0.3 (n)lpm	

Table 5 Evaluated parameters			
Interfacial Contact Resistance	Before and after corrosion measurements		
Fluoride Emissions	Orion ionplus® fluoride electrode		
Iron ion contents of exhaust water and MEA	GF-AAS, F-AAS and ICP- AES (TKK analysis centre)		

Figure 12 904L samples after the corrosion test. On the left: the anode samples, on the right: the cathode samples.

VTT

Fluoride emissions

Flush out of fluoride at beginning of experiment. Otherwise, no clear trend in fluoride emission rates.

Post-mortem analysis of MEAs and steel samples

V

Future development of the MSC concept

- Continuous measurement of flow splitting by small mass flow sensors
 - Smaller stoichiometric ratios possible
 - Accurate water management studies
- Cell design for catalyst development
 - Adapted to small amounts of available catalyst

