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Why don’t we have “two fuel cell cars in every garage”?
 Major hurdles to overcome

– Cost
• 50% of cost of PEFC stack is due to Pt catalyst*

– Durability
• Pt and Pt alloy cathode electrocatalysts lose 

electrochemically-active surface area with time
– Fuel storage, availability, and delivery

 How can we get there?
– Materials and engineering advances

• better utilization/performance
• lower cost (e.g., PGM alternatives)

– Fundamental studies of materials
• how they work
• what limits their performance
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How can we get the necessary information?
 What’s needed for rational design of 

catalysts:  identity of active site; 
relationship between structure and 
degradation

 Must “see” inside the fuel cell while it’s 
running with 0.1-10 nm “vision”

 Probe must penetrate through flow field, 
gas diffusion layer, and ionomer to 
characterize catalyst on the atomic level

 X-rays can penetrate through low 
atomic number materials and have 
wavelengths on the order of atomic 
dimensions

 Synchrotron X-ray sources (high 
intensity, tunable wavelength), such as 
Argonne’s Advanced Photon Source, 
give us “X-ray vision”
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X-ray Absorption Fine Structure (XAFS)

h

 Oxidation state of absorbing atom
 Distances between atoms
 Number of neighboring atoms
 Identity of neighboring atoms
 Amount of absorbing material in 

beam
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Small-Angle X-ray Scattering (SAXS) 

Gives information on particles 1 - 100 nm in size

 Shape
 Mean Size
 Size Distribution
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Examples of systems studied with in-situ and ex-situ 
X-ray techniques

 Pt-based electrocatalyst degradation
– Oxidation state and correlation of loss of Pt with voltage

• X-ray absorption in an aqueous environment
– Oxide formation and Pt particle growth as a function of potential 

cycling
• Small angle X-ray scattering and anomalous small angle X-ray 

scattering
• Aqueous environment and MEA

 Non-platinum group metal catalyst composition, structure, oxidation state, 
and amount of absorbing metal using X-ray absorption
– During pyrolysis
– Effect of post-pyrolysis acid treatment
– As a function of potential in aqueous environment
– In MEA during polarization
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Cells for in situ X-ray studies of cathode catalysts
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 300 m thick window 
machined over three 
channels of single 
serpentine flow field* 
(modified Fuel Cell 
Technologies 
Hardware)

*Based on published design:  Principi, E.; Di Cicco, A.; Witkowski, A.; Marassi R. J. Synchrotron 
Rad., 2007, 14, 276. 
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Aqueous in-situ XAFS shows potential dependence of Pt loss 
and Pt oxidation state 
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Platinum loss occurs during anodic and cathodic potential 
scans
 Greatest Pt loss observed in anodic step from 1.1 to 1.4 V

0.4

0.6

0.8

1

1.2

1.4
Potential (V)

Potential Cycle

0

2

4

6

8

10

12

14

16 -2

-1.5

-1

-0.5

0

0.5

%
 L

os
s 

Ed
ge

 S
te

p 
H

ei
gh

t


(%

 Loss)



10

XAFS shows platinum loss and oxide formation are linked

 Pt loss is highest during oxide formation
 Approximately same extent of oxidation show different 

Pt loss rates
– Evidence against major role of oxide dissolution
– Evidence for dissolution of metal
– “Time-resolved” experiments are underway

 Extent of Pt oxidation decreases with potential cycling -
may be indicative of particle growth
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SAXS studies shows Pt particle growth with cycling
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Non-platinum group metal electrocatalysts

 Cobalt or iron either complexed with C-N 
polymer/molecule or pyrolyzed (J.P. Dodelet, 
Los Alamos NL, U. South Carolina, 3M, et al.)
– Low cost 

• (Co ~US$ 3 /oz, abundance 20,000-
30,000 ppb in Earth’s crust vs 3-37 ppb 
for Pt)

– Promising oxygen reduction activity, but 
lower than platinum group metals

– Good durability, but longer testing and 
cycling tests are needed (>1000 hrs)

 Issues:
– Identity of the active site is unknown

• Metal center coordinated to pyridinic
nitrogen

• Encapsulated metal catalyzes formation 
of active site

– Metal leaches from catalyst during operation
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R. Bashyam and P. Zelenay, Nature, 2006.

Metal particle



13

XAFS analysis shows Co-polypyrrole (not pyrolyzed) catalyst 
changes with time/potential

 Slow break in:  possible formation of ORR 
sites during operation or removal of site-
blocking species

 Ex-situ XAFS data:  as-prepared MEA 
contained a mixture of cobalt metal and a 
small oxide fraction

 In-situ XAFS data:  cobalt metal fraction is 
removed and/or converted to higher 
oxidation state

 Three cobalt species observed in-situ:
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Los Alamos NL’s pyrolyzed polyaniline-Fe(Co)-C ORR catalysts

Pt/C
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Aqueous cell in-situ data for pyrolyzed polyaniline-Fe-C system 

 XAFS shows reversible reduction of Fe3+

catalyst component between 0.64 and 0.44 V
 Fe is lost from the electrode with greatest loss 

observed during this reduction step

0.0

1.0

2.0

3.0

W
t%

 F
e

0.87 0.64 0.44 0.24 0.44 0.64 0.84 1.04 0.87

Potential (V vs. SHE)

FeS2

Fe2O3Fe3O4

FeO

FeSO4

Fe metal

Fe-phthalocyanine

0.0

0.4

0.8

1.2

1.6

2.0

7050 7100 7150 7200 7250
Energy (eV)

A
bs

or
ba

nc
e

0.87 V

0.64 V

0.44 V

0.24 V

1

2

3

4

5

6

8



16

Pyrolyzed polyaniline-Fe-C catalyst composition 
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 MEA preparation:
– Removes metal
– Removes sulfides
– Oxidizes Fe2+ to Fe3+
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 Fe is lost from MEA during long-
term polarization at 0.6 V 
(approx. 50% loss)

 Ratio of Fe2O3 to Fe-pc coordination 
is approx. unchanged
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Summary

 In-situ X-ray absorption and scattering techniques are powerful for diagnosing 
the state of PEFC catalysts during operation

 New in-situ X-ray fuel cell block design allows XAFS studies in fluorescence 
mode
– Enables study of very low loadings of low Z metals (e.g., Fe and Co)
– Eliminates the need to modify flow field design
– Allows the study of one electrode of a cell when the opposing electrode 

contains the same metal (e.g., can study Pt in a Pt cathode with a Pt 
anode)
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 Future needs/experiments
– Combination of scattering and absorption 

experiments with microsecond time resolution
– Simultaneous spatio-temporal resolved (micrometer 

and microsecond) atomic, electronic, and particle size 
characterization for a wide range of metals (e.g., Pt 
and Co in Pt3Co catalyst) 
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