A NOVEL FBG SENSOR FOR *IN-SITU* HUMIDITY MEASUREMENT IN A POLYMER ELECTROLYTE MEMBRANE FUEL CELL

Julian Jensen

Ned Djilali Peter Wild Institute for Integrated Energy Systems Department of mechanical Engineering, University of Victoria, British Columbia, Canada Torsten Berning Institute of Energy Technology, Aalborg University, Denmark E-mail: julianjensen@gmail.com

Agenda

Project description Water in a Fuel Cell ■ FBG sensing principle Sensor fabrication Sensor calibration Results □ Future work

FBG Humidity sensor

- Working on it for four months
- Utilizing a lot of knowledge obtained by Prof.
 Peter Wilds FBG-group
- Using the FC-test station with help from Ph.D. student Nigel David who will continue my work and improve the design

Water management

Now: can measure in -and outlet RH
 No *in-situ* measurements

 Conventional sensors are too big
 No way of knowing when the air saturates in the FC

 Too wet → flooding → blocking of pores in GDL or electrodes
 Too dry → loss of proton conductivity

Water management

Temp	λ=1.5	λ=2	λ=3	λ=6	λ=12	λ=24
(°C)						
20					213	142
30				194	117	78
40		273	195	112	68	45
50	208	164	118	67	40	26
60	129	101	72	41		
70	82	65	46			
80	54	43	30			
90	37	28				

Exit air RH, Inlet is
 20°C and RH is 70%

- If FC is operated above 60°C, external humidification is needed
- Difficult to control RH and flooding occurs easily when no feed-back

Larmine & Dicks, Fuel Cell Systems Explained

FBG sensing principle

- A FBG is written into the core of the fibre using UV-laser.
- This induces a periodic modulation of the core refractive index
- Only one WL is reflected, the Bragg WL
- When fibre is strained, the Bragg WL shifts
- Possibility of multiplexing 100s of sensors on one fibre

Sensor fabrication

- Thin coating → fast response time but low sensitivity
- Trade-off
- Compensated for by etching fibre from 125 μm to 37 μm, reduces tuning force by a factor of 10

Coating of fibre

COATING STEPS FROM LITERATURE

- Chose "Expensive" polyimide
- 1. Take off existing polyimide
- 2. Clean with isopropanol
- 3. Coat with adhesion promoter
- 4. Cure
- 5. Coat with Polyimide, multiple layers
- 6. Cure
- 7. DONE!

COATING SET-UP

Calibration Humidity

ASTM 104 standard

Salt	RH @ 20°C
K ₂ Co ₃	43.2±04
NaBr	59.1±0.5
KI	69.9±0.3
NaCl	75.5±0.2
KCl	85.1±0.3
K ₂ SO ₄	97.6±0.6

Calibration Temperature

 Fibre is more than 10 times more sensitive to T than RH

Dry air (<2% RH)
 Heated to 90°C and cooled

Results Humidity calibration

Results Temperature Calibration

Results Response time

 43-85%: 8s increasing RH, 14s decreasing
 43-98%: 9s increasing RH, 14s decreasing
 (t₉₀)
 Compared to literature: 18 min

In-situ non-operating

In-Situ Operating

Sensor @ outlet

- 0-3300s: <2% RH air
- 3300: 12%RH air
- Long start-up
- Slow humidification

Conclusions & future work

Coating recipe updated
9s response-time
0.65 pm/%RH
10.9 pm/°C
Good repeatability

\$32,350 from Vytran

- New fixture
- Calibrate for more RHs
- Calibrate in constant temperature
- Compare models to measurements
- MultiplexingSmaller FBG

Thank you for your attention