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Motivations and goals

Motivations

Developing SOFC technology to face environmental- and energy-related
ISsues.

High SOFC potential for both residential and mobile applications (high
efficiency, cogeneration, modularity, fuel flexibility, low emissions and
noise).

Specific short-term target: enhance the development of highly-efficient
SOFC-APUs destined to a wide application area (ground transportation,
marine and airplane APUSs).

Goals

Development of model-based tools for Fast Design, Control and
Diagnosis of SOFC systems.

Adopt lumped modeling approach to meet the trade-off between
computational burden, experimental efforts and model accuracy.




lagnosis of SOFC Systems

Objectives

* Prevent SOFCs from highly damaging system failures
*  Monitoring SOFC operations throughout its lifetime

« Detect and manage faults

Type of faults

 BoOP level
— Sensors (pressure, temperature) & Actuators (electric motors, valves)
— Auxiliaries (blower/compressor, heat exchangers, reformer)
— Components (pipes, manifolds)
« Stack level
— Material degradation
— Electrodes poisoning
— Etc.

Design and real time operation of diagnostics tools
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Modeling Approach

A hierarchical structure combining several models was developed to
achieve accurate and fast SOFC APU dynamic model

Models’ Hierarchy

1. Real system

[IMECE2004_60927]

2. Physical modeling

model

[IMECE2005_82359]

3. Control-oriented [
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Modeling scheme

; t Outer APU scheme
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Modeling assumptions

Spatial variations are not considered, i.e. lumped
modeling approach.

Thermal dynamics is predominant; mass transfer and
electrochemistry were assumed instantaneous.

Lumped heat transfer coefficients were assumed to
model heat exchangers.

Adiabatic components.

Water gas shift reaction is considered at equilibrium.
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Model-based design

Air pre-heater

Type Printed plate

Material Ceramic

Heat transfer coefficient 200 W/m?/K

Heat Transfer Area 0.56 m?

Heat capacity 588 J/K
Pre-reformer

Type Steam

Material Ceramic

CH4 conversion efficiency 0.3

S/C 2.5

Heat transfer coefficient 200 W/m?/K

Heat Transfer Area 0.04 m?

Heat capacity 44 J/K

SOFC stack
Configuration Planar
Material Ceramic
Electroactive area 100 cm?
Anode thickness 600 um
Electrolyte thickness 50 um
Cathode thickness 50 um
Interconnect thickness 500 pm
Heat capacity 8234 J/K
Pressure 1 bar
Temperature in 700 °C
Temperature out 825 °C
Number of cells 150
Max DC Gross Power @ 0.8 A/cm? 7.5 kw
Max AC Net Power @ 0.8 A/cm? | 5 kW
Fuel utilization 0.7
X4,e- Feformate Xy, = 0.273
X0 = 0.483
Xena = 0.171
Xco = 0.019
Xeq, = 0.054

Battery-pack

Type Lead-acid
Number of modules 15

Open circuit voltage 12V
Capacity 25 Ah




Water |H20=1.12 kg/h@
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SOFC system — Block diagram
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APU control scheme

Fuzzy-logic based map designed to:

3 look-up tables (J; V3; V4) Accessories load | | ° Satisfy power demand;
« maximize global efficiency;

Pdemand,AC  guarantee a charge sustaining
strategy for the batteries.
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SOFC are air-cooled then A is
control variable

Tair,in(t) R
SOFC Ts,out
" System
A
+
PI /\]}
TS,out,des = Tair,in"I 00

SOFC - Cold-start control

Temperature trajectories
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SOFC - Warmed-up control
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Simulated power profile

« Simulation-based testing of the
SOFC-APU model.

 The reference profile, generated P, =2kW
randomly, is a typical auxiliary load P... =6 kW
profile for commercial trucks in
parked idling phase.

Auxiliaries AC power demand

. 6 \ \ \
* Two scenarios were analyzed: | * : :
> | N ]l S
Case 1 | with SOFC cold-start _4 1 J “[ ***** l
Case 2 |warmed-up SOFC %3 a1 }A i ] {
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Simulation results

DC powers - Case 1
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Cold-start operation impacts on

fuel consumption. \ 0.4
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Diagnostics scheme

Detection of air leakage (i) and stack degradation (ii) with
Parity-equation based diagnostics method:

. Plant Y
. . R1= Dnetp_Pnetm
Diagnosis ’ ’
A R2=|P, . —P
Fault / ross, ross,m
> Model—> Fault scheme ault [yes noL ) P )
R3= Pcp,p — Pcp,m
Val
Inference from symptoms
“
A
4
Fault R1 | R2 | R3

i) Air leak 1 1
}) Air leakage 0 redundancy
ii) Increased Ohmic losses 1 1 1
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Fault detection

1) Stepwise Air leakage

Residual trajectories

Power trajectories
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Conclusions

Modeling methodologies were proposed to develop control-
/diagnostic-oriented models of SOFC cells/stacks.

Model-based design of suited control strategies to ensure
optimal energy and thermal management.

The developed model and related control strategies were
tested via simulation of a typical auxiliary power demand
profile for commercial heavy-duty trucks.

Model suitability for developing appropriate diagnostics
strategies/architecture.

Future work will focus on diagnosing the whole SOFC system
and perform experimental testing of control and diagnostic
strategies.
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