

UNIVERSITY OF SALERNO Department of Mechanical Engineering

Development of a Model-Based Diagnostics Tool for Solid Oxide Fuel Cells

<u>Marco Sorrentino</u>, Cesare Pianese eProLab (Energy and Propulsion Laboratory)

msorrentino@unisa.it - www.eprolab.unisa.it

Presentation Outline

- Motivation, goals, approach
- Design/Control/Diagnosis oriented model for APU
- Application of the model
 - Design and Control
 - Simulation of a typical automotive auxiliary load profile
 - Diagnostics
- Conclusions

Motivations and goals

Motivations

- Developing SOFC technology to face environmental- and energy-related issues.
- High SOFC potential for both residential and mobile applications (<u>high</u> <u>efficiency</u>, <u>cogeneration</u>, <u>modularity</u>, <u>fuel flexibility</u>, <u>low emissions and</u> <u>noise</u>).
- Specific short-term target: enhance the development of highly-efficient SOFC-APUs destined to a wide application area (ground transportation, marine and airplane APUs).

Goals

- Development of model-based tools for Fast Design, Control and Diagnosis of SOFC systems.
- Adopt lumped modeling approach to meet the trade-off between <u>computational burden, experimental efforts and model accuracy</u>.

On-Field Diagnosis of SOFC Systems

Objectives

- Prevent SOFCs from highly damaging system failures
- Monitoring SOFC operations throughout its lifetime
- Detect and manage faults

Type of faults

- BoP level
 - Sensors (pressure, temperature) & Actuators (electric motors, valves)
 - Auxiliaries (blower/compressor, heat exchangers, reformer)
 - Components (pipes, manifolds)
- Stack level
 - Material degradation
 - Electrodes poisoning
 - Etc.

Design and real time operation of diagnostics tools

Diagnostic process

Modeling Approach

A hierarchical structure combining several models was developed to achieve accurate and fast SOFC APU dynamic model

SOFC APU Block Diagram

Hybridized with battery for start-up; peak power; transients; energy storage

Modeling assumptions

- Spatial variations are not considered, i.e. lumped modeling approach.
- Thermal dynamics is predominant; mass transfer and electrochemistry were assumed instantaneous.
- Lumped heat transfer coefficients were assumed to model heat exchangers.
- Adiabatic components.
- Water gas shift reaction is considered at equilibrium.

Model-based design

SOFC stack

Configuration	Planar
Material	Ceramic
Electroactive area	100 cm ²
Anode thickness	<u>600 μm</u>
Electrolyte thickness	50 μm
Cathode thickness	50 μm
Interconnect thickness	500 μm
Heat capacity	<u>8234 J/K</u>
Pressure	1 bar
Temperature in	700 °C
Temperature out	825 °C
Number of cells	150
Max DC Gross Power @ 0.8 A/cm ²	7.5 kW
Max AC Net Power @ 0.8 A/cm ²	<u>5 kW</u>
Fuel utilization	0.7
x _{fuel} - reformate	$x_{H2} = 0.273$
	$x_{H2O} = 0.483$
	$x_{CH4} = 0.171$
	$x_{co} = 0.019$
	$x_{CO2} = 0.054$

Air pre-heater

Туре	Printed plate	
Material	Ceramic	
Heat transfer coefficient	200 W/m²/K	
Heat Transfer Area	0.56 m ²	
Heat capacity	<u>588 J/K</u>	
Pre-reformer		
Туре	Steam	
Material	Ceramic	
CH4 conversion efficiency	0.3	
S/C	2.5	
Heat transfer coefficient	200 W/m²/K	
Heat Transfer Area	0.04 m ²	
Heat capacity	<u>44 J/K</u>	

Battery-pack

Туре	Lead-acid
Number of modules	<u>15</u>
Open circuit voltage	12 V
Capacity	25 Ah

🕲 SOFC system – Block diagram ≶

APU control scheme

SOFC - Cold-start control

14

SOFC - Warmed-up control

Simulated power profile

- Simulation-based testing of the SOFC-APU model.
- The reference profile, generated randomly, is a typical auxiliary load profile for commercial trucks in parked idling phase.
- Two scenarios were analyzed:

Case 1	with SOFC cold-start
Case 2	warmed-up SOFC

Simulation results

Simulation results

Diagnostics Application

Diagnostics scheme

Detection of air leakage (i) and stack degradation (ii) with Parity-equation based diagnostics method:

Fault detection

i) Stepwise Air leakage

ii) Stepwise Stack degradation

21

Conclusions

- Modeling methodologies were proposed to develop control-/diagnostic-oriented models of SOFC cells/stacks.
- Model-based design of suited control strategies to ensure optimal energy and thermal management.
- The developed model and related control strategies were tested via simulation of a typical auxiliary power demand profile for commercial heavy-duty trucks.
- Model suitability for developing appropriate diagnostics strategies/architecture.
- Future work will focus on diagnosing the whole SOFC system and perform experimental testing of control and diagnostic strategies.