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•
 

Motivation, goals, approach

•
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–
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•
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Motivations
•

 
Developing SOFC technology to face environmental-

 
and energy-related 

issues.
•

 
High SOFC potential for both residential

 
and mobile

 
applications (high 

efficiency, cogeneration, modularity, fuel flexibility, low emissions and 
noise).

•
 

Specific short-term target: enhance the development of highly-efficient 
SOFC-APUs

 
destined to a wide application area (ground transportation, 

marine and airplane APUs).

Goals
•

 
Development of

 
model-based tools for

 
Fast Design, Control and 

Diagnosis
 

of SOFC systems.
•

 
Adopt lumped modeling approach

 
to meet the trade-off

 
between 

computational burden, experimental efforts and model accuracy.

Motivations and goals
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Objectives
•

 

Prevent SOFCs

 

from highly damaging system failures
•

 

Monitoring SOFC operations throughout its lifetime
•

 

Detect and manage faults

Type of faults
•

 

BoP level
–

 

Sensors (pressure, temperature) & Actuators (electric motors, valves)
–

 

Auxiliaries (blower/compressor, heat exchangers, reformer)
–

 

Components (pipes, manifolds)
•

 

Stack level
–

 

Material degradation
–

 

Electrodes poisoning
–

 

Etc.
Design and real time operation of diagnostics tools

On-Field Diagnosis of SOFC Systems
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Diagnostic process
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Modeling Approach
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task 1

1-D steady-state 
model

Control & 
Diagnostics 
Strategies

Verification of Control 
and Diagnostics 

Tools

SOFC SOFC APU1. Real system

2. Physical modeling

3. Control-oriented 
modeling

task 2

task 3

task 4

task 5

task 6

Control-oriented
dynamic model

SOFC-APU model

[IMECE2005_82359]

[IMECE2004_60927]

[FuelCell2007-25056 ]
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A hierarchical structure combining several models was developed to 
achieve accurate and fast SOFC APU dynamic model



SOFC APU Block Diagram

Planar co-flow SOFC:
•

 
Highly efficient.

•
 

Easy monitoring of temperature 
gradients.

•
 

No hot spots.
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Modeling scheme

Outer APU scheme

Inner SOFC system scheme
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Modeling assumptions

•
 

Spatial variations are not considered, i.e. lumped
 modeling approach.

•
 

Thermal dynamics is predominant; mass transfer and 
electrochemistry were assumed instantaneous.  

•
 

Lumped
 

heat transfer coefficients were assumed to 
model heat exchangers.

•
 

Adiabatic
 

components.

•
 

Water gas shift reaction is considered at equilibrium.
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The outlet temperature 
is the state variable 

The entire
 model (stack+BoP) is

≈ 100 tim
e faster th

an real-tim
e !!!
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Model-based design

Configuration Planar
Material Ceramic
Electroactive area 100 cm2

Anode thickness 600 m
Electrolyte thickness 50 m
Cathode thickness 50 m
Interconnect thickness 500 m
Heat capacity 8234 J/K
Pressure 1 bar
Temperature in 700 °C
Temperature out 825 °C
Number of cells 150
Max DC Gross Power @ 0.8 A/cm2 7.5 kW
Max AC Net Power @ 0.8 A/cm2 5 kW
Fuel utilization 0.7
xfuel - reformate xH2 = 0.273

xH2O = 0.483
xCH4 = 0.171
xCO = 0.019
xCO2 = 0.054

SOFC stack
Type Printed plate

Material Ceramic

Heat transfer coefficient 200 W/m2/K

Heat Transfer Area 0.56 m2

Heat capacity 588 J/K

Air pre-heater

Type Steam

Material Ceramic

CH4 conversion efficiency 0.3

S/C 2.5

Heat transfer coefficient 200 W/m2/K

Heat Transfer Area 0.04 m2

Heat capacity 44 J/K

Pre-reformer

Battery-pack
Type Lead-acid

Number of modules 15

Open circuit voltage 12 V

Capacity 25 Ah



H2O = 1.12 kg/h
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SOFC system –  Block diagram
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APU control scheme

Supervisory 
Control
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Low-level control

Low-level control aims 
at ensuring proper 
thermal management 
of the SOFC with:
•2 PI controllers (cold 
start; warmed-up)

Fuzzy-logic based map designed to:
•

 

satisfy power demand;  
•

 

maximize global efficiency;
•

 

guarantee a charge sustaining 
strategy for the batteries. 

Rate Limiter
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3 look-up tables (J; V3; V4)



0 10 20 30 40
0

20

40

60

80

100

120

Time [min]

[V
]

Voltage trajectory

0 10 20 30 40
0

200

400

600

800

1000

Time [min]

[°C
]

Temperature trajectories

 

 

Tcat,in

TSOFC,out

SOFC -  Cold-start control

Ts,out,des =

 

Tair,in -100



SOFC
System

PI
+

-

Ts,out

Tair,in (t)

14

SOFC are air-cooled then 
 

is 
control variable

Batteries only

•
 

The PI acts
 

on the excess of air to 
limit the difference between Tair,in 
and Ts,out below 100 °C.

•
 

20 minutes Start-up
 

time was 
obtained. 
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Simulated power profile
•

 
Simulation-based testing of the 
SOFC-APU model.

•
 

The reference profile, generated 
randomly, is a typical auxiliary

 
load

 profile for commercial trucks
 

in 
parked idling

 
phase.

•
 

Two scenarios were analyzed:
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Simulation results
•

 
The selected number of modules 
allows a more conservative 
operation of the battery pack.

•
 

Cold-start influences SOFC power 
requests (case 1).
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Case 1 warm-up period



Simulation results
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•
 

Cold-start operation impacts on 
fuel consumption.

•
 

Low-level control guarantees a 
proper thermal management.
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Diagnostics Application
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Diagnostics scheme
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Fault detection
i) Stepwise Air leakage
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ii) Stepwise Stack degradation
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Conclusions
•

 
Modeling methodologies were proposed to develop control-

 /diagnostic-oriented
 

models of SOFC cells/stacks.

•
 

Model-based design of suited control strategies to ensure 
optimal energy and thermal management. 

•
 

The developed model and related control strategies were 
tested via simulation of a typical auxiliary power demand 
profile for commercial heavy-duty trucks. 

•
 

Model suitability
 

for developing appropriate diagnostics
 strategies/architecture.

•
 

Future work will focus on diagnosing the whole SOFC system
 and perform experimental testing

 
of control and diagnostic 

strategies.

22


	UNIVERSITY OF SALERNO�Department of Mechanical Engineering��Development of a Model-Based Diagnostics Tool for Solid Oxide Fuel Cells
	Presentation Outline
	Motivations and goals
	On-Field Diagnosis of SOFC Systems
	Diagnostic process
	Modeling Approach
	Slide Number 7
	Modeling scheme
	Modeling assumptions
	SOFC dynamic model
	Model-based design
	SOFC system – Block diagram
	APU control scheme
	Slide Number 14
	Slide Number 15
	Simulated power profile
	Simulation results
	Simulation results
	Diagnostics Application
	Diagnostics scheme
	Fault detection
	Conclusions

