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Why model fuel cells?

•Increase safety and reliability for ship owners by 
writing better rules
•Help manufacturers design for marine environment
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Kilde: Eidesvik Offshore (FellowSHIP project)
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The expertise DNV gains by creating and using models will help in making better rules 
for minimizing risk, increasing reliability and efficiency optimization.
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The cell is a cross-flow molten carbonate fuel cell, which we model as 
consisting of three layers to achieve short enough solution times.

Temperatures

Gas flows

Heat conduction

Heat convection

Chemical reactions

Voltage and current

http://www.doitpoms.ac.uk/tlplib/fuel-cells/printall.php
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The status of the modelling:
We have a model of the cell itself 

i) With temperature distributions

ii) Fuel and air gas compositions

iii) Chemical reactions

iv) Electric current, voltage and power 
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We model the gasses as flowing in one direction in two-dimensional layers, 
neglecting both depth and the channel structure.
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The chemical reactions are described by empirical equations taken from 
literature.

4 2 23CH H O H CO+ ⇔ +

2 2 2CO H O H CO+ ⇔ +

The models for the reforming reaction rates are 
taken from Sundmacher et al. ”Molten carbonate 
fuel cells – modeling, analysis, simulation, and 
control” 2007, p231
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Energy conservation leads to the equations for the temperature of the two- 
dimensional gas layers, the three dimensional ”solids” and the heat flows.
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gas and solids through 
convective heat transfer
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The heat from the chemical reactions is deposited 
or taken from the top of the membrane, the solid 
approximating the anode, electrolyte and cathode.
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The heat transfer is modelled using convective heat transfer between gas and 
solid, convective heat transport in the gas and heat conductance in the solid.

Fuel gas with no external heat coming in or 
out, just the transport through the flow.
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Fuel gas with heat flowing into/from the membrane and the upper interconnect

The convective heat transfer coefficients, h, 
are dependent on the geometry of the cell, 
and data on these will be important for a 
model to realistically depict a given cell. 

- Gas channel width, height, number. 

- Shape of channels.

The fuel only flows in the x-direction, 
therefore we only include the derivative with 
regards to x. The air only flows in the y- 
direction, so for the air gas we use the 
derivative with regards to y.
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Heat flowing in and out of the solid are 
governed by boundary conditions
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The heat equation determines the 
heat flow within the solid
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We model the anode/electrolyte/cathode membrane as a solid, with the same 
thermal conductivity and heat capacity for all parts of the membrane.
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Animation by MTU – onsite energy

The gPROMS tools combines an equation based solver with graphical 
connections between components.

MTU HotModule principle
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We can use the model to look at the gas composition and temperature 
distribution inside the cell
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A steady-state performance map can be generated to illustrate system 
performance for different control parameters.
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Transient simulations between different steady-state running points can be 
used to find the optimal ways of changing load.
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Simulations can be used to help introduce more environmentally 
friendly power generation systems
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