

Resonant Sensor for Selective In-situ Gas Monitoring at High Temperatures

Michal Schulz, Denny Richter, Jan Sauerwald, Holger Fritze

- Introduction
 - Motivation
 - Langasite
- Selective high-temperature gas sensor
 - Microbalance mode
 - Conductivity mode
 - Combined operation mode
- Sensor system
 - Array of sensors
 - Micromachining of sensors
 - Network analyser
- Application example
- Conclusions

- Introduction
 - Motivation
 - Langasite
- Selective high-temperature gas sensor
 - Microbalance mode
 - Conductivity mode
 - Combined operation mode
- Sensor system
 - Array of sensors
 - Micromachining of sensors
 - Network analyser
- Application example
- Conclusions

Motivation

In-situ Gas monitoring at elevated temperatures (600–900 °C)

- Gas reforming for fuel cells
- Waste combustors
- Requirement of distinction between CO and H₂

Langasite (La₃Ga₅SiO₁₄)

- Piezoelectric material
- Crystal structure like Quartz
- Operation up to the melting point at 1470 °C:
 - No phase transformation
 - Excitation of bulk acoustic waves
 - At 600 °C stable for p_{O_2} > 10⁻²⁰ bar
- 4" wafers commercialy available
- Suitable for high-temperature applications
 - Thickness shear mode of vibration
 - Y-cut
 - 5 MHz

Single crystal of langasite grown using the Czochralski-technique

Stability of Langasite

- Mixed ionic and electric conductivity
- Slow self diffusion of oxygen
- Negligible gallium loss at elevated temperatures

Relative resonance frequency change of langasite and quartz and their operation limits

M. Schulz, J. Sauerwald, D. Richter, H. Fritze, *Electromechanical properties and defect chemistry of high-temperature piezoelectric materials*, Ionics, 15 (2009) 157–161 H. Fritze, M. Schulz, H. Seh, H.L. Tuller, S. Ganschow, K. Jacobs, *High-temperature electromechanical properties of strontium-doped langasite*, Solid State Ionics, 177 (2006) 3171–3174

Stability of Langasite

- Mixed ionic and electric conductivity
- Defect chemistry already known
- Atomic transport investigated

Diffusion coefficient of oxygen and gallium in langasite

M. Schulz, J. Sauerwald, D. Richter, H. Fritze, *Electromechanical properties and defect chemistry of high-temperature piezoelectric materials,* Ionics, 15 (2009) 157–161 H. Fritze, M. Schulz, H. Seh, H.L. Tuller, S. Ganschow, K. Jacobs, *High-temperature electromechanical properties of strontium-doped langasite,* Solid State Ionics, 177 (2006) 3171–3174

Stability of Langasite

Electromechanical parameters
 Full set known up to 900 °C

M. Schulz, H. Fritze, *Electromechanical properties of langasite resonators at elevated temperatures*, Renewable Energy, 33 (2008) 336–341

- Introduction
 - Motivation
 - Langasite
- Selective high-temperature gas sensor
 - Microbalance mode
 - Conductivity mode
 - Combined operation mode
- Sensor system
 - Array of sensors
 - Micromachining of sensors
 - Network analyser
- Application example
- Conclusions

Selective High-Temperature Gas Sensor

- Microbalance mode
- Large underlying platinum electrode
 - Shift of resonance frequency due to mass change

$$\Delta f_r = \frac{2f_r^2}{A\sqrt{\rho c_{66}}}\Delta m$$

- Sensor film
 - Thin oxide layer with affinity to specific gas
 - Redox reaction and adsorption \rightarrow mass change
 - Conductivity change

Selective High-Temperature Gas Sensor

- Conductivity mode
 - Modification of microbalance principle
- Small underlying platinum electrode
 - Effective area of electrode affected by conductivity changes
 - Increase of area → increase of sensitivity
- Electrical properties dominate the frequency shift

conductivity

D. Richter, H. Fritze, T. Schneider, P. Hauptmann, N. Bauersfeld, K.-D. Kramer, K. Wiesner, M. Fleischer, G. Karle, A. Schubert, *Integrated high temperature gas sensor system based on bulk acoustic wave resonators,* Sensors & Actuators B, 118 (2006) 466-471

Selective High-Temperature Gas Sensor

Resonators operated simultaneously in different modes

- Operating temperature: 600 °C
- Determination of gas concentrations
- Measurement of pO2

- Introduction
 - Motivation
 - Langasite
- Selective high-temperature gas sensor
 - Microbalance mode
 - Conductivity mode
 - Combined operation mode
- Sensor system
 - Array of sensors
 - Micromachining of sensors
 - Network analyser
- Application example
- Conclusions

- Array of sensors
 - Several independent resonators
 - Alumina sample holder
 - Screen-printed platinum electrodes
- Integrated heater for temperature control
- Network analyser

Langasite resonators in alumina sample holder of gas reformer sensor

Scheme of the microcontroller-based standalone gas sensor

- Wet-chemical etched membranes
 - Resonance frequency: 60 MHz
 - Thickness: 23 µm
 - Diameter: 3 mm
 - Great mass sensitivity
 100 times higher than
 5 MHz resonator

- Biconvex membranes
 - Improvement of Q-Factor
 - Energy trapping

- Micromachining of sensor arrays
 - Dimensions: 1.5 mm radius, 50 µm thickness
 - Higher frequency \rightarrow higher mass-sensitivity
- Sample holder
 - Alumina
 - Screen-printed platinum contacts
 - Meander-platinum structure for temperature control
 - Simultaneous use of several arrays

Biconvex membranes wetetched on langasite

- Commercial systems:
 - Expensive laboratory equipment
 - Not suitable for industry application
- Development of the low-cost network analyser:
 - Designed with application in mind
 - Complete standalone system for gas monitoring

Typical network analyser used in laboratory conditions

Standalone miniaturized network analyser developed by our project partners

- Introduction
 - Motivation
 - Langasite
- Selective high-temperature gas sensor
 - Microbalance mode
 - Conductivity mode
 - Combined operation mode
- Sensor system
 - Array of sensors
 - Micromachining of sensors
 - Network analyser

Application example

Conclusions

Application Example – Gas Reformer

- Gas control in reforming process
- Simultaneous measurement of H₂ and CO in the exhaust gas
- Low-cost solution

Schematic view of gas reformer for fuel cells

Application Example – Gas Reformer

- Two different oxide layers
 - TiO₂ microbalance mode
 - CeO₂ conductivity mode
- Successful simultaneous detection of H₂ and CO

Comparison between frequency shift of TiO₂ coated resonator (conductivity mode) and two CeO₂ coated resonators, operated in conductivity (left) and microbalance modes (right).

Conclusions

- Langasite based resonator operates up to the melting point at 1470 °C
- Increased frequency shift compared to regular resonators in case of conductivity operation mode
- Different materials for sensing layers reduce cross sensitivity
- Micromachining
 - Construction of several sensing membranes on one substrate
 - Improvement of Q-factor with biconvex membranes
- Standalone system for *in-situ* measurement of H₂ and CO content is developed

Other Gas-Sensing/Fuel Cell Related Projects

ESA / EADS – Gas control and conditioning

- In-situ measurement and control of oxygen partial pressure
- Measurement of sensor cross sensitivity
- Control of environment of levitation melts
- Oxygen ion pump

DFG research projects

- Fundamental research on high temperature piezoelectric resonators and sensor materials
- Micromachining of langasite
- Array of resonators as temperature sensor for 200 900 °C range

Acknowledgement

- Financial support
 - German research foundation (DFG)
 - German Federation of Industrial Research Associations (AiF)
 - European Space Agency (ESA)
- Alumina machining
 - PSFU, Wernigerode
- Standalone network analyser
 - Institute of Micro and Sensor Systems, Otto-von-Guericke-University Magdeburg
- Langasite growth and sample preparation
 - Institute of crystal growth (IKZ), Berlin
 - Eberhard Ebeling (TU Clausthal)

Future Research Activities

- Improvements in mircomachining
 - Smaller arrays
 - Higher resonance frequencies
 - Better sensitivity
- Investigation of sensing layers
 - More precise estimation of CO and H₂ concentrations
- Improvements of long-term stability
- Reduction of cost of the complete system
- Wireless temperature and gas sensors