International Symposium on Diagnostics Tools for Fuel Cell Technologies

Impedance Spectroscopy as a Diagnosis Tool for SOFC Stacks and Systems

André Weber, Dino Klotz, Volker Sonn, Ellen Ivers-Tiffée

Institut für Werkstoffe der Elektrotechnik (IWE) Universität Karlsruhe (TH) Adenauerring 20b, 76131 Karlsruhe, Germany

Control an Diagnosis of SOFC-Stacks and Systems Stack Monitoring by Impedance Spectroscopy

Control of parameters critical for a failure free operation of stack and system

- stack performance and efficiency
- stack temperature(s)
- reformer temperature(s)
- actual steam to carbon ratio / $\lambda_{\text{POx}}\text{-value}$
- fuel (reformate) composition
- oxidant and fuel flow rates
- oxidant and fuel temperatures at gas inlet
- oxidant and fuel pressure inlet
- exhaust gas composition (remaining CO, HC's)
- ..

Monitoring of the internal resistance of the stack by electrochemical impedance spectroscopy

source: ENBW, Delphi

Impedance Spectroscopy Materials, (Model-) Electrodes and Single Cells

Electrochemical Impedance Spectroscopy

- H. Gerischer, Elektrodenpolarisation bei Überlagerung von Wechselstrom und Gleichstrom.
- Z. Elektrochem., 58, 9, 278, 1954

Impedance Spectroscopy Materials, (Model-) Electrodes and Single Cells

Electrochemical Impedance Spectroscopy

Analysis of Solid Electrolytes by Impedance Spectroscopy

J. E. Bauerle, *Study of solid electrolyte polarization by a complex admittance method,* J. Phys. Chem. Solids **30**, 2657, 1969

source: see above

2009-06-24 EIS Diagnosis for Stacks.ppt, slide: 4, 9/17/2009

Impedance Spectroscopy Materials, (Model-) Electrodes and Single Cells

Electrochemical Impedance Spectroscopy

Analysis of Solid Electrolytes by Impedance Spectroscopy

Analysis of Electrode Microstructure and Degradation Behaviour

T. Kawada, N. Sakai, H. Yokokawa, <u>M. Dokiya</u>, M. Mori, T. Iwata, *Characteristics of Slurry-Coated Nickel Zirconia Cermet Anodes for Solid Oxide Fuel Cells*, J. Electrochem. Soc., **137**, 3042, 1990

Impedance Spectrum of an Anode Supported Single Cell

• 2 or more electrochemical processes ???

Institut für Werkstoffe der Elektrotechnik

Universität Karlsruhe (TH)

high resolution impedance data analysis required !!!

cell type: ASC el. area: 1 cm² fuel: H_2 (9.4% H_2 O), 250 sccm oxidant: air, 250 sccm

Impedance Data Analysis Distribution of Relaxation Times (DRT)

H. Schichlein et al., Deconvolution of Electrochemical Impedance Spectra for the Identification of Electrode Reaction Mechanisms in Solid Oxide Fuel Cells, J. Appl. Electrochemistry, 32, 8, 875, (2002)

Impedance Spectrum of an Anode Supported Single Cell Distribution of Relaxation Times

- high resolution data analysis by the DRT
- 5 processes resovable
 - \rightarrow perform impedance measurements at varying operating conditions !
- A. Leonide et al., J. Electrochem. Soc, 155 (1), pp. B36-B41, (2008).

Universität Karlsruhe (TH) Institut für Werkstoffe der Elektrotechnik cell type: ASC el. area: 1 cm² fuel: H_2 (9.4% H_2 O), 250 sccm oxidant: air, 250 sccm

Analysis of Electrochemical Processes in an ASC Variation of Operating Temperature

- up to 5 different electrochemical processes resolvable
- impedance values in between 10 and 1000 $m\Omega{\cdot}cm^2$

A. Leonide et al., J. Electrochem. Soc, 155 (1), pp. B36-B41, (2008).

Universität Karlsruhe (TH) Institut für Werkstoffe der Elektrotechnik T = 600 ... 850 °C fuel: H₂, 250 sccm $p(H_2O) = 0.635$ bar ox.: air, 250 sccm

Analysis of Electrochemical Processes in an ASC Impedance Model of a Single Cell -0.2 cell type: ASC R_{3A} R_{2A} R_{2C} R₀ R_{1A} R_{1c} el. area: 1 cm² ₩ fuel: H₂ (9.4% H₂O), 250 sccm oxidant: air, 250 sccm Z" / Ω·cm² T = 717 °C $\mathbf{Q}_{\mathbf{2}\mathbf{A}}$ \mathbf{Q}_{1C} $Q(\omega) = -$ OCV -0.1 $-\mathbf{W}_{\overline{\mathbf{s}}} \quad \underline{Z}_{W}(\omega) = R_{W} \cdot \frac{\tanh\left[(j\omega T)^{\alpha}\right]}{\left(j\omega T\right)^{\alpha}}$ $-\mathbf{G} \quad \underline{Z}_{G}(\omega) = \frac{Z_{0}}{\sqrt{k+i\omega}}$ -o- impedance spectrum **CNLS-Fit** anodic cathodic 0.0 0.1 0.2 0.3 0.4 0.5 0.0 $0.6Z' / \Omega \cdot cm^2$ $^{\text{Abbreviation}} | f_r$, ASR dependence electrode process / physical origin P_{1C} 0.3...10 Hz, 2...100 mΩcm² $p(O_2)$ gas diffusion (<< 10 m Ω ·cm² in air) P_{2C} 10...500 Hz, 8...50 mΩcm² $p(O_{2}), T$ oxygen surface exchange kinetics and O²⁻diffusivity P_{1A} 4...20 Hz, 30...150 mΩcm² $p(H_2), p(H_2O)$ gas diffusion (anode substrate) P_{2A} 2...8 kHz, 10...50 mΩcm² $p(H_2), p(H_2O), T$ gas diffusion coupled with charge transfer reaction and ionic transport (AFL: anode P_{3A} 12...25 kHz,10...130 mΩcm² $p(H_2), p(H_2O), T$ functional layer) A. Leonide et al., J. Electrochem. Soc, 155 (1), pp. B36-B41, (2008).

Electrochemical Impedance Spectroscopy for Stacks Impact of Cell and Stack Size

Electrochemical Impedance Spectroscopy for Stacks Testing Equipment

3 kW _{el} SOFC stack 60 cells a 100 cm ² $U_{stack} = 42 V$ $I_{stack} = 71.4 A$	target values	solartron analytical 1260/1287 + Power Booster	ZAHNER® Messsysteme IM6 + PP 2xx	Princeton Applied Research VersaSTAT4 + Power Booster	CLB 500	FuelCon TrueData-EIS
frequency range	1 mHz 1 MHz	10 μHz 100 kHz	10 μHz 200 kHz	(10 µHz 1 MHz)	10 µHz 10 kHz	200 μHz 100 kHz
impedance range	0.1 100 mΩ	10 μΩ 1 kΩ	1 μΩ 1 kΩ	n.s.	n.s.	0.1 mΩ 15 Ω
accuracy (error at 1 mΩ / 100 kHz)	1 %	30 % / 30° (@ 10 mΩ)	0.25 % (f, Z not specified)	n.s.	2 % / 2°	1 % / 1°
max. bias voltage [V]	100	50	± 5 / 10 / 20	20	10	300
max. bias current [A]	100	25	± 40 / 20 / 10	20	50	1000
max. power diss. [kW]	3	0.125	0.25	n.s.	0.5	150
\rightarrow limitations due to the testing equipment						

Universität Karlsruhe (TH) Institut für Werkstoffe der Elektrotechnik

source: websites and datasheets of manufacturers

Analysis of Electrochemical Processes in an ASC Gas Conversion Impedance (at decreased fuel flow rate)

 \rightarrow the gas conversion impedance will be included in the stack impedance

Electrochemical Impedance Spectroscopy for Stacks 2-dimensional Impedance Model

2-dimensional Impedance Model Local Impedance Spectra and Stack Impedance

2-dimensional Impedance Model for Stacks Space and Time Dependence of the Fuel Utilization β_f

Experimental Sulzer Hexis Stack Test Bench

Sulzer Hexis stack test bench

- 5 cell stack
- 100 cm² electrode area
- operating on pipeline gas
- desulfurization (disengageable)
- catalytic partial oxidation
- controlled gas flows
- controlled stack temperature (not thermal self-sustaining)
- variable interconnect / flow field geometry
- testing of different MEAs and MICs possible

Impedance spectroscopy ?

Sulzer Hexis Stack Test Bench Modifications for Impedance Spectroscopy

EIS-Equipment

- Zahner IM6 & PP200 potentiostat
- impedance range: 1 $\mu\Omega$... 1 $k\Omega$
- frequency range: 10 µHz ... 100 kHz
- dc current: 20 A

Universität Karlsruhe (TH) Institut für Werkstoffe der Elektrotechnik

source: IWE, presented at Solid State Ionics 15 (2005)

2009-06-24 EIS Diagnosis for Stacks.ppt, slide: 18, 9/17/2009

Sulzer Hexis Stack Test Bench Modifications for Impedance Spectroscopy

Modifications

- adaptation of voltage probes & current lines to decrease mutual inductances
- impedance converters for dc voltage metering
- multiplexer for single cell / stack impedance measurement

source: IWE, presented at Solid State Ionics 15 (2005)

Stack Diagnosis Impedance Spectra of Stacks and Cell Units

Impedance spectra of the individual cell units

Single Cell Units 1 to 5

Universität Karlsruhe (TH) Institut für Werkstoffe der Elektrotechnik

provide more detailed information

source: IWE, presented at Solid State Ionics 15 (2005)

2009-06-24 EIS Diagnosis for Stacks.ppt, slide: 20, 9/17/2009

System Diagnosis Impedance Data Analysis by parametric extended DRT

Universität Karlsruhe (TH) Institut für Werkstoffe der Elektrotechnik

source: IWE, presented at Solid State Ionics 15 (2005)

2009-06-24 EIS Diagnosis for Stacks.ppt, slide: 21, 9/17/2009

System Diagnosis Impact of CPOx Reformer Temperature on cell voltage and n_{RQ}

Universität Karlsruhe (TH) Institut für Werkstoffe der Elektrotechnik

source: IWE, presented at Solid State Ionics 15 (2005)

2009-06-24 EIS Diagnosis for Stacks.ppt, slide: 22, 9/17/2009

Conclusions and Outlook Future Research Activities - Diagnostic Tools for FC-Technologies

- Impedance spectroscopy is a powerful tool to analyze SOFC stacks but
 - The available testing equipment hardly fulfills the requirements
 - The stack testing facilities have to be designed for impedance spectroscopy
 - Complex impedance models are required to understand the stack impedance
- To do's:
 - Development of impedance analyzers for (SOFC-) stacks
 - Development of tools for stack impedance modeling and data analysis
 - Standardized testing procedures for stack impedance measurement and data analysis

Impedance Spectroscopy and Impedance Data Analysis IWE-References

- H. Schichlein, M. Feuerstein, A. C. Müller, A. Weber, A. Krügel and E. Ivers-Tiffée, "System identification: a new modelling approach for SOFC single cells", Proceedings of the Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-VI), pp. 1069-1077 (1999).
- H. Schichlein, Experimentelle Modellbildung für die Hochtemperatur-Brennstoffzelle SOFC, Aachen: Verlag Mainz (2003).
- E. Ivers-Tiffée, A. Weber and H. Schichlein, "Electrochemical impedance spectroscopy", in W. Vielstich, H. A. Gasteiger, and A. Lamm (Eds.), *Handbook of Fuel Cells Fundamentals, Technology and Applications*, Chichester: John Wiley & Sons Ltd, pp. 220-235 (2003).
- E. Ivers-Tiffée, A. Weber and H. Schichlein, "O2-reduction at high temperatures: SOFC", in W. Vielstich, H. A. Gasteiger, and A. Lamm (Eds.), *Handbook of Fuel Cells - Fundamentals, Technology and Applications*, Chichester: John Wiley & Sons Ltd, pp. 587-600 (2003).
- H. Schichlein, A. C. Müller, M. Voigts, A. Krügel and E. Ivers-Tiffée, "Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells", *Journal of Applied Electrochemistry* 32, pp. 875-882 (2002).
- V. Sonn, A. Leonide and E. Ivers-Tiffée, "Towards Understanding the Impedance Response of Ni/YSZ Anodes", *ECS Transactions* **7**, pp. 1363-1372 (2007).
- A. Leonide, V. Sonn, A. Weber and E. Ivers-Tiffée, "Evaluation and Modelling of the Cell Resistance in Anode Supported Solid Oxide Fuel Cells", *ECS Transactions* **7**, pp. 521-531 (2007).
- A. Leonide, V. Sonn, A. Weber and E. Ivers-Tiffée, "Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells", *J. Electrochem. Soc.* **155**, p. B36-B41 (2008).

Acknowledgements Many Thanks to our Partners and Funding Organizations

Universität Karlsruhe (TH) Institut für Werkstoffe der Elektrotechnik

source: IWE & Partners