

Insights into the Water Management Problem of PEFCs Provided by Neutron Imaging

P. Boillat, <u>G.G. Scherer</u>, P. Oberholzer, R. Perego, A. Wokaun, G. Frei*, E.H. Lehmann*

Electrochemistry Laboratory *Neutron Imaging Group, ASQ Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland

Neutron radiography – Experimental setup

- 1. The collimated neutron beam becomes attenuated while passing through the cell, depending on the local presence of attenuating material
- 2. By hitting the scintillator the attenuated beam evokes the irradiation of light
- 3. The resulting optical image is recorded after reflection on a mirror

A. Geiger et al., Fuel Cells 2 (2002) 92

Advantages of Neutron Imaging

➤Good Transparency for Structural Materials

➢ High Contrast for Water

➢Isotopic Sensitivity

Limitations:

➢ Spatial and Temporal Resolution

NEUTRA: thermal neutron radiography beamline

CCD camera on linear table for variable size field of view

ICON: Cold neutron imaging beamline

- Energy selective imaging
- Infrastructure to handle up 500kg samples

NI in combnation with locally resolved EIS, CV,others

I.A. Schneider, D. Kramer, A. Wokaun, G.G. Scherer, Electrochem. Commun. **7**, 1393 (2005) I.A. Schneider, G.G. Scherer Fuel Cell Handbook, Vol. 5&6, Chapter 45 (2009)

Through Plane and In Plane Imaging

P. Boillat, D. Kramer, B.C. Seyfang, G. Frei, E. Lehmann, G. G. Scherer, A. Wokaun, Y. Ichikawa, Y. Tasaki, K. Shinohara, Electrochemistry Communications **10**, 546 (2008)

PAUL SCHERRER INSTITUT

Detector improvement - Results

Examples: Images of Dry Fuel Cells

Type A (Paper)

Material Comparison at 100% RH

FC Tools, Trondheim, June 09

120%

100%

Dynamic imaging

Future

•Explore the spatial and temporal limits of NI

•Combine with other methods, e.g. current measurements with sub mm resolution

•Combine with ex situ characterization

Insights into the Water Management Problem of PEFCs Provided by Neutron Imaging

P. Boillat, <u>G.G. Scherer</u>, P. Oberholzer, R. Perego, A. Wokaun, G. Frei*, E.H. Lehmann*

Electrochemistry Laboratory *Neutron Imaging Group, ASQ Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland