

Microstructural Investigations of Cathode – Barrier Layer – Electrolyte Interface in a SOFC

Ruth Knibbe, Johan Hjelm, Jason Wang, Mohan Menon

Risg DTU National Laboratory for Sustainable Energy

CGO Barrier Layer

- 1) Introduction motivation for investigation
- 2) Electron Microscopy Charaterisation of PLD CGO Barrier layers
 - Scanning Electron Microscopy (SEM)
- 3) Long-term Degradation of PLD CGO Barrier Layers

2

CGO Barrier Layer - Motivation

- LSC highly reactive with YSZ electrolyte
 - Barrier layer required between the YSZ electrolyte and LSC cathode– Gd-doped Ceria (CGO)
- YSZ-CGO interdiffusion, (T >1100°C) low conductivity CGO/YSZ solid solution
 - Low temperature deposition technique required physical vapour deposition (PVD) e.g. pulsed laser deposition (PLD)

CGO Barrier Layer – Rs Comparison

4

SEM across CGO barrier layers

SEM

- periodic SrZrO₃ formation at CGO-YSZ interface - imaging and EDS
- no obvious interaction of CGO with YSZ electrolyte - EDS
- CGO barrier layer thin, dense

Risø DTU National Laboratory for Sustainable Energy

Origin of R_s in 2.5G SOFC - Calculated

Ionic conductivity at 650°C

CGO – 1.78 x 10⁻² S/cm YSZ – 9.81 x 10⁻³ S/cm CGO/YSZ – 5.78 x 10⁻⁴ S/cm

SrZrO₃ – 3.16 x 10⁻⁵ S/cm (1200°C)

SrZrO₃

600 nm

PLD Barrier Layer Cell $R_s (\Omega.cm^2)$

YSZ - 1.2×10^{-1} CGO- 3.4×10^{-3} SrZrO₃/CGO- 1.7×10^{-3} YSZ-CGO - 5.2×10^{-4} <u>Total R_s - 1.3×10^{-1} </u>

7

PLD CGO Interface

- PLD layer
 - thin (600 nm) + dense; reduced the interaction of CGO with YSZ; small amount of SrZrO₃ formation.
- No major interaction between CGO-YSZ
- By mitigating \mbox{SrZrO}_3 formation major contributor to \mbox{R}_s is the YSZ electrolyte

Fuel Cell Degradation

Testing Conditions

Duration: 1500 hours Temperature: 650°C Current Density: 0.75 A/cm² Active Area: 16 cm². Fuel Electrode: H2:CO2 (4:1) Air Flectrode: Air Utilisation: 20%.

Impedance degradation under current

-t= 44 h

t= 164 h t = 400 h

t= 737 h

0 60

Rs, Rp degradation with time

National Laboratory for Sustainable Energy

Xno (8000

6000 0000

6000

	Initial	Degradation	
	mΩ·cm²	%/ 1000hrs	mΩ·cm²/ 1000hrs
R _s	159	17	27
R _p	316	9	29

9

Z"/ [Ω·cm²]

0.10

0.00

Rp degradation – Characteristic Hz

$\Delta Z^{\prime\prime}$ change with time

	Initial	Degradation		
	mΩ·cm²	%/ 1000hrs	mΩ·cm²∕ 1000hrs	
R _s	159	17	27	
R _p	316	9	29	

	Summit
	Frequency
Anode Polarisation	0.7 kHz
Anode Gas Diffusion	20 Hz
Anode Gas Conversion	3 Hz
Cathode Polarisation	7 Hz
Cathode Gas Related	2 Hz

Hjelm, J. *et al. ECS Transactions* 13(26):285-299, 2008.

Risø DTU National Laboratory for Sustainable Energy

Rp degradation – Gas shift impedance

Rs degradation during testing

	D	T	U	
-	-		-	
-	ě		ě	

	Initial	Degradation		
	mΩ·cm²	%/ 1000hrs	mΩ·cm²/ 1000hrs	
R _s	159	17	27	
R _p	316	9	29	

PLD Barrier Layer Cell $R_s (\Omega.cm^2)$

```
YSZ (12µm) – 1.2 x 10<sup>-1</sup>
CGO (600nm) – 3.4 x 10<sup>-3</sup>
YSZ-CGO (3nm) – 5.2 x 10<sup>-4</sup>
SrZrO<sub>3</sub>/CGO (600nm) – 1.7 x 10<sup>-3</sup>
<u>Total R_s – 1.3 x 10<sup>-1</sup></u>
```

Before Testing

After Testing

Kinetic Demixing - Sr depletion (Hjalmarsson, P. et al. Solid State Ionics (179): 1422 - 1426(2008))

Conclusions

- PLD an effective barrier layer
- Long-term testing for 1500⁺ hours
 - Cell Degradation
- Diagnostic recommendations for SOFC testing
 - Impedance and electrical characterisation provides insitu overview of cell degradation
 - Electron microscopy (EM) provides post-mortem results to support electrical characterisation
 - Area chosen for characterisation must be chosen judiciously
 - Results from EM can be sight specific
 - A suitable and representative reference must be available!

Future Work

- Reproducibility PLD and Cathode
- Long-term degradation mechanism
- Improved Barrier Properties (Sputtered Layers)

Conclusions

Risø DTU National Laboratory for Sustainable Energy