

Materials Science & Technology

Application of advanced and non destructive testing in solid oxide fuel cells

Peter Wyss, Erwin Hack Laboratory for Electronics/Metrology/Reliability

Artur Braun, Lorenz Holzer, Christian Soltmann, Peter Holtappels Laboratory for High Performance Ceramics

Empa, Swiss Federal Laboratories for Materials Testing and Research Überlandstr 129, CH-8600 Switzerland

Outline

metallic components

Solid Oxide Fuel Cell - Principles -

Non-destructive Testing (NdT)

component	state	potential problem	ndt test method
metallic	machined part	cracks, bad welds	X-ray RT, CT, UT for interconn.
metallic	assembled in stack	corrosion, contamination	RT, CT X-rays, Neutrons ?
ceramic	green machined	porosity + homogenity,	RT, μCT local mode,
	part	shrinkage cracks	X-rays, TT
ceramic	assembled and	cracks + delaminations	RT, μCT local mode,
	fired to cell	(thermal cycling)	X-rays, TT
ceramic	cells mounted	fatigue cracks	RT, CT, Neutrons +
	in the stack	(thermal cycling)	contrast fluid ?

Neutron tomography

permits "insight" into submillimeter porosity of SOFC stack

The RT / CT microscopy (macroscopy) system

The crack detection limit in radiography

Visible light microscopy

of a hidden coarse grain

FOV 5 x 5 mm, pixelsize 2.5 µm

Radiographies

Visible light microscopy

of a shrinkage crack

FOV 5 x 5 mm, pixelsize 2.5 µm

Local X-ray µCT of crack in pellet Ø 35 x 1 mm

Field of view 5 x 5 mm, voxelsize 5 µm

Local X-ray µCT of hidden coarse grain

Field of view 5 x 5 mm, voxelsize 5 µm

TT, RT and local μ CT to HTceramics cells

Camera		Cedip JADE	
Camera type		Array	
Resolution		240 x 320 pix	
Wavelength range		3-5 µm	
Frame rate		Full: 170 Hz ROI: 9 kHz	
Lateral resolution		15 x 15 µm²	
NETD		20 mK	
Temp. range		-20 – 1300 °C	
Lock-In frequency		< 5 kHz	

The thermography cam, heart of the TT system

TT, RT and local μ CT to HTceramics cells Thermography testing (TT), impulse method

flash hits surface

lateral resolution ≈ 2 x depth

diffusion wave propagates

bad bond spot stops the heat diffusion wave and after some time a thermic contrast appears: positive at the impulse side, negative at the rear side

TT, RT and local μ CT to HTceramics cells

Impulse thermography images of a region containing a spot of high thermal conductivity

Istantaneous after flash

20 msec later

FOV 180 x 150 pixel or 28 x 25 mm, Pixelsize 167 µm

FOV for RT +µCT

TT, RT and local μ CT to HTceramics cells

The same region (FOV 5 x 5 mm) imaged with:

Radiographies, pixel size 2.5 µm

Local tomography, voxel size 5 µm

Focussed Ion Beam (FIB) technique

Conventional preparation procedure

Advanced preparation procedure

TEM: Imaging & elemental analysis

DLR BekNi 275/3

chemical map: Ni Zr

FIB-Nanotomography: 3-D structure of a FC

Nanotomography: Informationsgewinn

3D Imaging Particulate und micro structure

Distinction Crystallite-Particulate aggregates

Use of Information: Modeling Understanding degradation →e.g. sulphur poisoning

NdT methods and diagnostics strategy

- Visual testing (VT), including visible light microscopy
 - will be done in any case
- Ultrasonic testing (UT)
 - requires flat surfaces and low damping, 3D possibility
- Eddy current testing (ET)
 - for electrical conductors only
- Magnetic testing (MT)
 - for ferritic materials only
- Thermography (TT)
 - best for close to surface items, 3D possibility
- Radiographic testing (RT, CT, XTM)
 - No requirements to surfaces and damping, 3D possibility

- Quality assurance
 - cell production
 - stacking
- Life time / Durability
 - comparison of pre and post test state by NdT possible
 - failures affecting mechanical properties visible by NdT
 - Combination of NdT advantageous
 - identification of points for destructive analysis
 - 3D imaging → real structures
 → validation of 2D analysis
 (e.g. SEM, OM)

Acknowledgement

- Defne Bayraktar, EMPA
- Ulrich Vogt, EMPA
- Thomas Graule, EMPA
- Günter Schiller, DLR
- SINQ, PSI
- Josef Sfeir, Hexis
- HTceramix

4. A possible NdT procedure for cells

Impulse thermography overview (FOV = 80×80 mm) Pixel size 0.33 mm, meas. time per cell ≈ 2 min

Impulse thermography close up (FOV = 8 x 8 mm) Pixel size 33 μ m, meas. time per cell ≈ 10 min (automated)

Radiography overview (FOV = 80 x 80 mm) Pixel size 20 μ m, meas. time per cell \approx 5 min

Radiography close up (FOV = 8 x 8 mm) Pixel size 4 μ m (OVHM - Movie), meas. time per item \approx 10 min (auto)

Local tomography (FOV = 8 x 8 mm), meas. time per item \approx 60 min voxel size 4 µm or calculation of items depth by evaluating the trajectories from OVHM -Movie