ిల్ల AVL

Monitoring of membrane failure due to pinhole formation

Viktor Hacker, Eva Wallnöfer

Department of Chemical Engineering and

Environmental Technology, TU GRAZ, Austria

Peter Prenninger

AVL List GmbH, Austria

Trondheim, June 23rd,2009

Overview

- 1. Introduction
 - degradation of PEMFC membranes
 - influence of operating conditions
- 2. In-situ Degradation Studies
 - operating conditions
 - characterization methods
- 3. Conclusions

Degradation of PEMFC Membranes – impacts of degradation

- membrane decomposition (release of HF, SO₂, CO₂, CO, C-F-compounds)
- membrane thinning
- higher gas permeability
- platinum particle deposition in the membrane
- performance loss of the MEA
- decrease of life time

Degradation of PEMFC Membranes – causes

- thermal degradation
- mechanical degradation
- chemical degradation

Degradation of PEMFC Membranes – influencing factors

o material properties

- membrane thickness
- gas pressure
- temperature
- gas humidity
- o cell assembling cell potential

 operating conditions

In Situ Degradation Studies

Operating Conditions

- <u>5 to 1 fuel cells</u> (in series), 25 cm² each operated under the same conditions up to 1300 h
 - permanent operating 24h/day, 7 days/week
 - interruptions only for electrochemical characterizations
 - every one or two weeks, one cell was removed (SEM analysis)
- gas flow:
 - H2: λ = 1.5 (at OCV: 300 ml min⁻¹)
 - Air: λ = 2.2 (at OCV: 300 ml min⁻¹)
- <u>MEAs:</u>
 - pt loading: A: 0.4 mg cm⁻², C: 0.6 mg cm⁻²
 - membrane: bilayer membrane, reinforced with PTFE, thickness: 35 μm
 - activation of the MEAs (6 h at 0.4 and 0.6 V)

Characterisation Methods

- performance (UI)
- cell potential (CP)
- membrane resistance (MR)
- fluoride emission rate (FER)
- pinhole detection (PD)
- membrane thickness and condition (SEM)

Hydrogen Diffusion

- anode: H₂ flow / cathode: N₂ flow
- standard conditions H₂ diffuses through the membrane and gets oxidised with an increasing potential
- the hydrogen diffusion current is limited by diffusion to < 5 mA cm⁻²
- if there is a pinhole, the current increases with increasing potential

Hydrogen Diffusion - Results

- the formation of a pinhole can not be forecasted
- end of membrane lifetime: time interval, at which the hydrogen diffusion current density is in the range

between 4 and 5 mA cm⁻²

standard

• 45 mA ● 90 mA

• 135 mA

○ 405 mA

low humidity

Cell Performance

- the cumulated performance of the stack was investigated; H_2 : $\lambda = 1.5 / Air$: $\lambda = 2.2$
- no gas pressure; T: 70 °C
- polarisation curves: changes with operating time

Fluoride Emission Rate - Results

- FER in the anode and cathode exhaust water was nearly the same, even though the degradation of the anode side was higher (→ SEM investigations)
- FER was slightly decreasing with operating time

Membrane Resistance - Results

- change of the resistance with the operating time
- the resistance does not correlate clearly to
 - operating conditions

membrane resistance / Ω

- operating time
- pinhole formation
- membrane thickness (SEM)
- a slight increase of the resistance could be observed at higher degradation/ long operating time in most cases
- the resistance is influenced by
 - the loss of proton conducting, hydrophilic functional groups
 - the structural changes of the hydrophobic phase
 - the thinning of the membrane

Scanning Electron Microscopy - Results

Conclusions

- a low cell current and a low gas humidity accelerate membrane degradation
- a lower temperature and higher cell currents slow membrane degradation
- the current density influences the impact of other parameters (e.g. gas humidity)
- the end of lifetime of the MEA was indicated by the detection of the first pinhole (at moderate performance losses)
- an exceed of a certain value of cumulated FER could indicate the formation of pinholes
- a drop of OCV below a certain value could indicate the formation of pinholes
- membrane thinning at the anode side occurred at long-time operation even under moderate operating conditions
- the membrane resistance did not correlate clearly to the membrane degradation, the formation of pinholes and the membrane thinning

future research activities

- evaluate and understand the complex interactions of fuel cell operating conditions, membrane parameters and membrane lifetime
- observe membrane and electrode degradation separately
- find a (simple) analysis instrument to observe membrane ageing during fuel cell operation

thank you for your kind attention!

