

Livestock Collection

Johan Oppen Molde University College

Outline

- Motivation.
- The Livestock Collection Problem.
 Models.
- Solution methods.
 - Tabu Search.
 - Column generation
- Computational results.
- Conclusions.

Motivation

- In this case, motivation is the easy part.
- The industry wants an automatic planning system for transportation of animals for slaughter.
 - Today, the routes are planned manually.
 - The industry thinks there is a potential for savings.
 - Currently available software seems to be unable to handle this problem in a satisfactory way.
- Find an academic partner and do a research project!

Motivation

- Research project 2003-2008: "Transportation of live animals – reduced transportation costs, good animal welfare and first-class meat quality".
 - Animalia (The Norwegian Meat Research Center).
 - Project administration.
 - Animal welfare aspects.
 - Molde University College.
 - Modelling, solution methods.
 - Four master theses, one PhD.
 - Two meat companies: Nortura (Gilde) and Fatland.
 - Problem description, test data.

Real-world problems

- When we want to solve problems from the real world, we have to be careful.
 - All important features of the problem must be included, even if our model gets large and ugly.
 - If the model is not close enough to the real problem, we may solve the wrong problem.
 - Solutions to the wrong problem is of no or very limited value.
 - We may have to accept that optimal solutions are impossible to find.
 - Heuristics may have to do the job.

The Livestock Collection Problem

- A rich VRP with inventory/production constraints.
 - Live animals are different from most other types of load.
 - Rules to support animal welfare.
 - Trade-off between vehicle capacity and route length becomes an issue.
 - Inventory constraints are added.
- VRP constraints on the routes.
 - Duration, mix of animal types, capacity, precedence.
- Inventory constraints.
 - The set of routes must fit to the production (slaughter) plan and inventory capacity at the slaughterhouse.
- Time horizon typically one week.

The vehicle can take pigs in 2 tiers, or pigs on top of bulls.

Models

- A <u>mathematical model</u> for the current version of the LCP can be written down in about 40 lines.
- It is large and ugly, or it is very nice, depending on what you want to do.
 - If you want to solve real-world instances to optimality, forget it.
 - If you want to use heuristics, it is a nice problem.
- A real-world instance will have millions of binary variables and non-linear constraints.

Models

- The LP relaxation of this type of model is typically 10 – 20% below the optimal IP solution.
- HUGE integrality gap.
- Simpler model solved to optimality with CPLEX for 7 orders.
 - Same type of model, standard VRP model with flow variables on the arcs.
 - Only one animal type, difficulties with mixing, loading sequence and computing capacity disappear.
 - Time periods during the day increases the model size.
 - No solutions with 8 orders.

Alternative formulation

- Apply Danzig-Wolfe decomposition and reformulate the original model into.
 - <u>Master problem</u>: set covering model based on *duties*, with global inventory constraints added.
 - A duty is one day's work for one vehicle.
 - The master problem has only a few rows.
 - Subproblems: Resource constrained shortest path problems.
 - All the routing constraints are put here, subproblems are solved by dynamic programming rather than by CPLEX.
 - Trips are short, typically 2-5 stops.
 - The LP relaxation is now typically < 2%.
 - SMALL integrality gap.
 - But there are quite a few variables ...

Solution methods

- Tabu Search heuristic developed.
- Basic ideas: generate a starting solution, move from one solution to the next by doing small changes to the current solution.
 - Avoid getting stuck in local optima.
 - Guide the search into unexplored parts of the solution space.
 - Allow for intermediate infeasible solutions.
 - Dynamic penalties to force the search back into the feasible region from time to time.
 - Special attention needed to handle inventory constraints, as these are global.

Solution methods

- Exact method based on column generation and the set covering model.
- Basic idea in column generation: solve the LP relaxation of the master problem with only a small number of variables (*restricted* master problem), generate and add new variables (columns) iteratively until the master problem is optimal.
 - Optimality condition: When no more columns with negative reduced cost can be found in the subproblems, the optimal solution for the restricted master problem is also optimal for the master problem.
- Because we are looking for a solution to an integer problem, apply Branch & Bound and solve the master by column generation in each node of the B&B tree.

Column generation

- What are the main difficulties?
- Master problem:
 - We have added inventory constraints to the standard VRP model.
- Subproblems:
 - We have no time windows, so it is possible to go almost anywhere when we generate paths.

- Domination is difficult, especially with respect to capacity.
- Branch & Bound:
 - There is a lot of symmetry.
 - Days are almost the same.
 - Vehicles have almost the same capacity.
 - Branching decisions are important, we have to try different strategies.

Results

- Small instances with up to 25 customers solved to optimality in reasonable time.
 - Solution time varies a lot.
 - More constrained instances are easier.
- For real-world instances, Tabu Search seems to work well.
 - We do not have much to compare with in terms of alternative heuristics.
 - We seem to outperform manual solutions by at least 10%.
 - Simulated Annealing seems to perform poorer than Tabu Search.

Results – column generation

Instance	Solution time	Nodes explored	Root node LB	Objective value	Gap
n20_v3_a	10 min	291	1860,37	1902,64	2,3%
n20_v3_c	8 sec	7	2566,93	2576,49	0,4%
n20_v3_d	33 sec	39	2543,11	2576,49	1,3%
n23_v3_a	80 min	1	1904,83	1904,83	0%
n24_v3_a	20 hours	1	1923,17	1923,17	0%
n25_v3_a	9 min	111	2054,52	2067,83	0,6%
n25_v3_b	7 min	297	1941,20	1973,55	1,7%
n26_v3_a	2 h 22 min	236	2054,52	2073,47	0,9%
n26_v3_b	78 hours*	5 174*	2082,01	2148,90*	3,2%*

What to do next

- The model is still (and will always be) incomplete.
- We would like to add:
 - Time windows, but we need more data.
 - Ferries in the road network, to compute travel time and travel cost more correctly.
 - Multiple depots.
 - Shared vehicle fleet and simultaneous planning of collection to multiple slaughterhouses.
 - Co-ordinated planning of delivery of live animals and collection of animals for slaughter.

What to do next

- New research project:
 - Nortura, Transvision, Animalia and Molde College.
 - Goal: Do more research and implement results in Transvision Livestock Planner.
 - -2 years, total costs ca. 4 mill. NOK.
 - We have applied for funding and hope for success, we will know by June 18.

Finally

• Thank you for your attention!

