
1

A Powerful Route Minimization
Heuristic for the Vehicle Routing

Problem with Time Windows

Yuichi Nagata
Japan Advanced Institute of Science and Technology

Olli Bräysy
University of Jyväskylä, Finland

2

Introduction

Vehicle routing problem with time window (VRPTW) is
one of the most important and studied VRP variant.

- primary objective: minimize the number of vehicles
- secondary objective: minimize the total travel distance

Recent trend of heuristic algorithms for the VRPTW is the
two-stage approach (Bent and Hentenryck, 04).
We propose an efficient route-minimization heuristic for
the VRPTW.

3

Outline of this talk

General framework using ejection pool

Our solution method

Experimental results

Conclusions

4

General framework of the Ejection Pool (1)
Route-minimization procedure using the EP (Lim and Zhang, 07)
1: Remove a route from σ and initialize EP with the removed

customers;
2: while EP is not empty do
3: Select vin from EP and remove it from EP
4: if vin can be inserted into σ then
5: Insert vin into σ ;
6: else
7: Insert vin into σ and eject customers from the resulting route;
8: Add ejected customers to EP ;
9: end if

10: end while

σ σ

5

General framework of the Ejection Pool (2)
Insert-ejection move

- For customer vin to be inserted, all edges can be insertion positions.
- For each insertion of vin , there are a lot of customer combinations,
vout

(1) , . . ., vout
(k), to be ejected

Which insertion-ejection move is better?
- The number of ejecting customers (k) should be small.
- Ejecting more than two customers may benefit the subsequent

insertion.

6

Our idea
A concept of the guided local search (GLS) is employed
to determine the insertion-ejection move.
Guided local search (GLS) (Voudouris and Tsang, 95)

- Penalizing solution features that are frequently
appeared in local minima during the local search.

- A modified objective function including the penalties
are used to help the local search escape from local
minima and to diverse the search.

In our solution method, customers in the EP are solution
features.

7

Main framework
Procedure Delete_Route (σ)
1: Randomly remove a route from σ and initialize EP ;
2: Initialize all penalty counters: p[v] = 1 (v =1, …, N) ;
3: while EP is not empty do
4: Select and remove vin from EP (LIFO queue)
5: if vin can be inserted into σ then
6: Insert vin into σ ;
7: else
8: Set: p[vin] = p[vin] + 1;
9: Execute the insertion-ejection move on σ such that

Psum = p[vout
(1)] +, . . ., + p[vout

(k)] is minimized ;
10: Add vout

(1) , . . ., vout
(k) to EP ;

11: σ := Perturb (σ) ;
12: end if
13: end while

8

Finding the best insertion-ejection move
How to find the insertion-ejection move that minimizes
Psum = p[vout

(1)] +, . . ., + p[vout
(k)].

There are enormous numbers of insertion-ejection moves.
- vin is given.
- All insertion positions for vin are tested.
- For each insertion, there are a lot of customer combinations to be

ejected. (k is limited up to kmax (=5).)

For each insertion, most of the ejection combinations can
be ignored (the detail is omitted).

9

Main framework (again)
Procedure Delete_Route (σ)
1: Randomly remove a route from σ and initialize EP ;
2: Initialize all penalty counters: p[v] = 1 (v =1, …, N) ;
3: while EP is not empty do
4: Select and remove vin from EP (LIFO strategy)
5: if vin can be inserted into σ then
6: Insert vin into σ ;
7: else
8: Set: p[vin] = p[vin] + 1;
9: Execute the insertion-ejection move on σ such that

Psum = p[vout
(1)] +, . . ., + p[vout

(k)] is minimized ;
10: Add vout

(1) , . . ., vout
(k) to EP ;

11: σ := Perturb (σ) ;
12: end if
13: end while

10

Perturb procedure
Procedure Perturb (σ): Outline
- Random local search moves are executed inside σ for

Irand (=1000) times.
- Each move is randomly selected from 2-opt*, relocation

and exchange moves.
- σ must be feasible after each move.

11

Improving the main framework

3: while EP is not empty do
4: Select and remove vin from EP (LIFO queue)
5: if vin can be inserted into σ (by the simple insertion) then
6: Insert vin into σ ; // simple insertion for vin

7: else
8: σ := Squeeze (vin , σ) ; // more powerful insertion for vin

9: endif
10: if (vin is not inserted) then
11: Set: p[vin] = p[vin] + 1;
12: Execute the insertion-ejection move on σ …… ;
13: Add vout

(1) , . . ., vout
(k) to EP ;

14: σ := Perturb (σ) ;
15: end if
15: end while

12

Squeeze procedure
Procedure Squeeze (vin , σ) : Outline

Insert vin into σ by allowing the violation of the constraints.
Local search based repair procedure restores the feasibility.
- 2-opt, relocation, exchange moves are applied inside σ
- A solution is evaluated by a penalty function to guide it toward
feasible solutions.

- A standard hill climbing.
Penalty function: Fp (σ) = Fc (σ) + α ⋅ Ftw (σ)
- penalty terms for the capacity and time window constraints

13

Penalty term: Ftw (σ) (Nagata, 07)
Time window penalty for a route: TWr

- A sequence of a route: r = <v0 , v1 , …… , vn , vn+1 >
- TWr = sum of the length of the red arrows
Time window penalty for σ
- Ftw (σ) =

- ΔFtw (σ) by a local search move from 2-opt, relocation and exchange
is calculated in O(1) time

∑ =
m
r rTW1

14

Experiments
Experimental settings

Algorithm-G: Squeeze procedure is not used.
Algorithm-GS: Squeeze procedure is used.

Benchmarks
Gehring and Homberger’s benchmarks

- Instance sets of 200, 400, 600, 800 and 1000-customer
- Each set consists of 60 instances.

Comparisons
The best-known solutions taken from (Pisinger and
Ropke, 07), (Ibaraki et. al., to appear), (Lim and Zhang,
07), (Gagnon et. al., 07), and SINTEF website (ignore
several wrong solutions).

15

Results
CNV: The cumulative number of vehicles in each problem size
instances
Best CNV: CNV in the best-known solutions.
Our result: The difference in the CNV from the Best CNV

16

New best-know solutions
The 18 new

best-known
solutions

17

Conclusions
A powerful route minimization heuristic for the VRPTW is
presented.

The idea of the main framework is simple.

- The concept of GLS is combined with a general
framework of the EP.

The main framework is further improved by the Squeeze
procedure.

The results of these methods are promising.

The main framework can be generalized and applied to
other combinational optimization problems (ongoing
work).

	A Powerful Route Minimization Heuristic for the Vehicle Routing Problem with Time Windows
	Introduction
	Outline of this talk
	General framework of the Ejection Pool (1)
	General framework of the Ejection Pool (2)
	Our idea
	Main framework
	Finding the best insertion-ejection move
	Main framework (again)
	Perturb procedure
	Improving the main framework
	Squeeze procedure
	Penalty term: Ftw() (Nagata, 07)
	Experiments
	Results
	New best-know solutions
	Conclusions

