A Powerful Route Minimization Heuristic for the Vehicle Routing Problem with Time Windows

Yuichi Nagata

Japan Advanced Institute of Science and Technology

Olli Bräysy

University of Jyväskylä, Finland

Introduction

- Vehicle routing problem with time window (VRPTW) is one of the most important and studied VRP variant.
 - primary objective: minimize the number of vehicles
 - secondary objective: minimize the total travel distance
- Recent trend of heuristic algorithms for the VRPTW is the two-stage approach (Bent and Hentenryck, 04).
- We propose an efficient route-minimization heuristic for the VRPTW.

Outline of this talk

- General framework using ejection pool
- Our solution method
- Experimental results
- Conclusions

General framework of the *Ejection Pool* (1)

Route-minimization procedure using the EP (Lim and Zhang, 07)

- 1: Remove a route from σ and initialize *EP* with the removed customers;
- 2: while EP is not empty do
- 3: Select *v*_{in} from *EP* and remove it from *EP*
- 4: if v_{in} can be inserted into σ then
- 5: Insert v_{in} into σ ;
- 6: else
- 7: Insert v_{in} into σ and eject customers from the resulting route;
- 8: Add ejected customers to *EP*;
- 9: end if

General framework of the *Ejection Pool* (2)

- Insert-ejection move
 - For customer v_{in} to be inserted, all edges can be insertion positions.
 - For each insertion of v_{in} , there are a lot of customer combinations, $v_{out}^{(1)}, \ldots, v_{out}^{(k)}$, to be ejected

- Which insertion-ejection move is better?
 - The number of ejecting customers (k) should be small.
 - Ejecting more than two customers may benefit the subsequent insertion.

Our idea

- A concept of the guided local search (GLS) is employed to determine the insertion-ejection move.
- Guided local search (GLS) (Voudouris and Tsang, 95)
 - Penalizing solution features that are frequently appeared in local minima during the local search.
 - A modified objective function including the penalties are used to help the local search escape from local minima and to diverse the search.
- In our solution method, customers in the EP are solution features.

Main framework Procedure Delete_Route (σ)

- 1: Randomly remove a route from σ and initialize *EP*;
- 2: Initialize all penalty counters: p[v] = 1 (v = 1, ..., N);
- 3: while EP is not empty do
- 4: Select and remove *v*_{in} from *EP* (LIFO queue)
- 5: if v_{in} can be inserted into σ then
- 6: Insert v_{in} into σ ;
- 7: else
- 8: Set: $p[v_{in}] = p[v_{in}] + 1;$
- 9: Execute the insertion-ejection move on σ such that $P_{sum} = p[v_{out}^{(1)}] +, \dots, + p[v_{out}^{(k)}]$ is minimized;
- 10: Add $v_{out}^{(1)}, \ldots, v_{out}^{(k)}$ to *EP*;
- 11: $\sigma := \operatorname{Perturb} (\sigma);$
- 12: end if

Finding the best insertion-ejection move

- How to find the insertion-ejection move that minimizes $P_{sum} = p[v_{out}^{(1)}] +, \dots, + p[v_{out}^{(k)}].$
- There are enormous numbers of insertion-ejection moves.
 - v_{in} is given.
 - All insertion positions for v_{in} are tested.
 - For each insertion, there are a lot of customer combinations to be ejected. (k is limited up to k_{max} (=5).)

For each insertion, most of the ejection combinations can be ignored (the detail is omitted).

Main framework (again) Procedure Delete_Route (σ)

- 1: Randomly remove a route from σ and initialize *EP*;
- 2: Initialize all penalty counters: p[v] = 1 (v = 1, ..., N);
- 3: while EP is not empty do
- 4: Select and remove v_{in} from *EP* (LIFO strategy)
- 5: if v_{in} can be inserted into σ then
- 6: Insert v_{in} into σ ;

7: else

8: Set:
$$p[v_{in}] = p[v_{in}] + 1;$$

9: Execute the insertion-ejection move on σ such that $P_{sum} = p[v_{out}^{(1)}] +, \dots, + p[v_{out}^{(k)}]$ is minimized;

10: Add
$$v_{out}^{(1)}, \ldots, v_{out}^{(k)}$$
 to *EP*;

- 11: $\sigma := \operatorname{Perturb} (\sigma);$
- 12: end if

Perturb procedure

Procedure Perturb (*σ***)**: Outline

- Random local search moves are executed inside σ for *Irand* (=1000) times.
- Each move is randomly selected from 2-opt*, relocation and exchange moves.
- σ must be feasible after each move.

Improving the main framework

- 3: while EP is not empty do
- 4: Select and remove v_{in} from *EP* (LIFO queue)
- 5: if v_{in} can be inserted into σ (by the simple insertion) then
- 6: Insert v_{in} into σ ; // simple insertion for v_{in}
- 7: else
- 8: $\sigma :=$ Squeeze (v_{in} , σ); // more powerful insertion for v_{in}
- 9: endif
- 10: if (*v_{in}* is not inserted) then
- 11: Set: $p[v_{in}] = p[v_{in}] + 1;$
- 12: Execute the insertion-ejection move on σ ;

13: Add
$$V_{out}^{(1)}, \ldots, V_{out}^{(k)}$$
 to *EP*;

- 14: $\sigma := \operatorname{Perturb} (\sigma);$
- 15: end if

Squeeze procedure

Procedure Squeeze (ν_{in}, σ) : Outline

- Insert v_{in} into σ by allowing the violation of the constraints.
- Local search based repair procedure restores the feasibility.
 - 2-opt, relocation, exchange moves are applied inside σ
 - A solution is evaluated by a penalty function to guide it toward feasible solutions.
 - A standard hill climbing.
- Penalty function: $F_p(\sigma) = F_c(\sigma) + \alpha \cdot F_{tw}(\sigma)$
 - penalty terms for the capacity and time window constraints

Penalty term: $F_{tw}(\sigma)$ (Nagata, 07)

- Time window penalty for a route: TW_r
 - A sequence of a route: $r = \langle V_0, V_1, ..., V_n, V_{n+1} \rangle$
 - TW_r = sum of the length of the red arrows
- Time window penalty for σ

- $\Delta F_{tw}(\sigma)$ by a local search move from 2-opt, relocation and exchange is calculated in O(1) time

Experiments

Experimental settings

- Algorithm-G: Squeeze procedure is not used.
- Algorithm-GS: Squeeze procedure is used.

Benchmarks

- Gehring and Homberger's benchmarks
 - Instance sets of 200, 400, 600, 800 and 1000-customer
 - Each set consists of 60 instances.

Comparisons

 The best-known solutions taken from (Pisinger and Ropke, 07), (Ibaraki et. al., to appear), (Lim and Zhang, 07), (Gagnon et. al., 07), and SINTEF website (ignore several wrong solutions).

Results

- CNV: The cumulative number of vehicles in each problem size instances
- Best CNV: CNV in the best-known solutions.
- Our result: The difference in the CNV from the Best CNV

-		Best	Algorithm-G			Algorithm-GS			
	N	CNV	1min	10min	60min	1min	10min	60min	<i>N</i> /200 h
	200	694	0	0	0	0	0	0	0
	400	1382	+3	+2	+2	+3	0	- 2	- 2
	600	2068	+7	- 1	- 1	+1	- 1	- 3	- 3
	800	2739	+15	- 1	- 3	+2	- 2	- 4	- 5
	1000	3425	+12	0	- 2	+2	- 5	- 6	- 8
	total	10308	+37	0	- 4	+8	- 8	-15	-18
# Fail to reach best-known			37	6	4	10	2	0	0
# Find new best			0	6	8	2	10	15	18

New best-know solutions

• The 18 new	Instances	N	Best-known	New Best	Time (min)
	C2_4_8	400	12	11	60
best-known	RC2_4_5	400	9	8	10
solutions	$C1_{-}6_{-}6$	600	60	59	60
3010110113	$C1_{-}6_{-}7$	600	58	57	60
	RC2_6_5	600	12	11	10
	C1_8_2	800	73	72	1
	C1_8_6	800	80	79	10
	C1_8_8	800	74	73	240
	C2_8_6	800	24	23	60
	RC2_8_1	800	19	18	1
	$C110_{-}6$	1000	100	99	10
	C110_7	1000	98	97	60
	C110_8	1000	93	92	300
	C210_3	1000	29	28	10
	C210_6	1000	30	29	10
	C210_7	1000	30	29	10
	C210_8	1000	29	28	300
	C21010	1000	29	28	10

Conclusions

- A powerful route minimization heuristic for the VRPTW is presented.
- The idea of the main framework is simple.
 - The concept of GLS is combined with a general framework of the *EP*.
- The main framework is further improved by the Squeeze procedure.
- The results of these methods are promising.
- The main framework can be generalized and applied to other combinational optimization problems (ongoing work).