

An attribute based Similarity Function for VRP Decision Support

Arne Løkketangen Molde University College, Norway

> Kjetil Fagerholt Jarl Korsvik Johan Oppen David L. Woodruff

> VIP 2008 - Oslo - 14 june 2008

Outline

- We look at distance/similarity measures for solutions to combinatorial optimization problems
- More particularly, we consider the family of vehicle routing problems (VRP).
- Our goal is the specification of similarity measures between solutions to a VRP instance.
- We will illustrate the use of this with 2 examples
 - Find *dissimilar* solutions for presentation to a DM after the search
 - Rich VRP
 - Produce *similar* solutions *during* the search
 - Ship scheduling *Rolling Horizon*

Decision Support Systems

- When we solve an optimization problem, we usually only have an approximate model of the real problem.
- There are often aspects of the problem that is not present in the model, for practical, political or other reasons
- The optimal solution might therefore only be of marginally more interest to a decision maker (DM) than other, good, solutions

DSS - Distance measures

- Search processes often generate a plethoria of solutions
- When should a new solution be presented to the DM?
- Some distance measure should be used
- Can use Hamming Distance on the 0/1 solution vector weak

Similarity is NOT Visual Pattern Matching

Similarity is NOT Visual Pattern Matching

People will say the routes are very similar,

Only rotated 45 degrees

 \Rightarrow Can not use isotropic measures

VIP 2008 - Oslo - 14 june 2008

Our Distance/Similarity Measures

- The words *similarity* and *distance* are complimentary and the literature for computing values for them is intertwined.
- We will use the terms *similarity* and *distance* function in their broad, intuitive sense
- For making measurements, and comparing them, we need a *metric*

Distance metrics

- To have a metric, we need
 - 1) d(x,x) = 0
 - 2) d(x,y) > 0 if $x \neq y$

3)
$$d(x,y) = d(y,x)$$

4)
$$d(x,y) + d(y,z) \ge d(x,z)$$

- We are not too concerned with 4) the triangle inequality
 - Our metric is a semi-metric

Tversky's similarity measure

• Given 2 sets A and B, then

$$J(A,B) \equiv \frac{|A \cap B|}{|A \cap B| + |A - B| + |B - A|}$$

- |A| denotes the cardinality of A
- $1 J(\bullet)$ is a semi-metric
- We will base our measure on generalizations of this ratio

Other Similarity/Distance Measures

- Number of common edges
 - Similar to Hamming distance
 - This is presumably too weak, ignores structure
 - E.g. TSP, VRP n edges in the tour, n² in total

Richer Models

- Our measures automatically applies to solutions of *richer* VRP models
 - Time Windows
 - Pickup-and-Delivery
- Our measures are concerned with *solutions*, and not the *constraints*

Computations

- We use a CVRP solver based on Laporte's solver (move a customer to a neighboring tour).
- Testcases are taken from standard benchmarks on the web, supplemented by real-world cases
- The solver collects the best solutions

Adding Attributes

- A solution often has attributes associated with its components
- For a VRP, attributes can be associated with
 - Stops
 - Arcs
 - Tours

Attributes for Stops

- Accessability
 - parking
 - manouvring
 - loading/unloading facilities
- Time windows
- Load
 - type of load
 - pickup or delivery
 - amount

Attributes for Arcs

- Length
- Road quality
 - Number of lanes
 - axle pressure
 - slope
 - curves
- Travel time
 - Average
 - variability
- Other travel time variations
 - rush hour
 - ferry routes

Attributes for Tours

- Day/time of tour
- Driver
- Vehicle
- Importance
 - criticality of load

Extended similarity measure

- With attributes we must extend the similarity measure
- Ex: Difference between vector elements x_i and y_i

$$\eta_j(x_j, y_j) \equiv \min\left(1, \frac{|x_j - y_j|}{s_j(\bullet)}\right)$$

• $S_j(\bullet)$ is some dispersion measure

Vector distance

• The distance between two vectors (of attributes) *x* and *y* is

$$\delta(w; x, y) \equiv \left(\sum_{j=1}^{p} \eta_j(x_j, y_j) w_j\right) / \sum_{j=1}^{p} w_j$$

Sets of vectors

Given two sets A and B, the following is a generalization of | A – B |

 $g(w; A, B) \equiv \sum_{k \in (A-B)} \sum_{k' \in B} \delta(w; A_k, B_{k'}) / |B|$

Sets of vectors

• Given two sets A and B, the following is a generalization of $|A \cap B|$

$h(w; A, B) \equiv (|A| - g(w; A, B) + |B| - g(w; B, A))/2$

Tversky's dissimilarity measure between two sets of vectors

$$d(w; A, B) = 1 - \frac{h(w; A, B)}{h(w; A, B) + g(w; A, B) + g(w; B, A)}$$

Note

- Our distance measure is valid only for feasible solutions
- Can use it for infeasible solutions anyway the user (implementor) knows the nature of the infeasibility

- Real world data transportation of livestock to a slaughterhouse in Norway. One week horizon
- Attributes:
 - Stops
 - Order number
 - Animal type
 - Size of order
 - Arcs
 - Identity
 - Length
 - Tours
 - Vehicle
 - Weekday
 - *Criticality* Is it necessary for immediate production ?

VIP 2008 - Oslo - 14 june 2008

Abandon usual practice

- Usually collect the K best (K = 5) solutions
- With a local search basis, many of these will be very similar (or marginally different), being collected on a descent phase.

Collection Strategy

- Only collect solutions that are sufficiently different
- If a new better, close, solution is found, throw out the previous one.
- Need a threshold for goodness, and for distance
- Required goodness (or quality) should diminish with distance
- The user (DM) should decide on K, the number of solutions to keep.
- These diverse solutions could be used for later intensification
 - Possibly user initiated

Using the difference measure – sunday

VIP 2008 - Oslo - 14 june 2008

Using the difference measure – Friendav

GLOLEN Using the difference measure – tuesday

niversic

Using the difference measure – wednesday

GLOLEN Using the difference measure – Thursday

niversic

GLOLEN Using the difference measure – Fridav

Diversit

Not using the difference measure – Sunday

Not using the difference measure – Monday

VIP 2008 - Oslo - 14 june 2008

Ship routing example

- Example from tramp shipping
- No depot
- Mandatory and optional cargoes
- Rolling horizon planning
 - Add one, or a few, new orders to the current plan
 - The new plan should be similar to the current plan
 - at least in the near future
 - larger differences far into the future is less important

Similarity Measure Needed !

- Need some way to both
 - generate new plans similar to the current plan
 - discriminate between such plans
- This clearly implies a tradeoff between reluctance to change and possible profit loss
- Important to include *nearness in time* in the measure

Persistance Penalty Function

- Difference penalty between plans A (new) and B (current)
- U_i^{AB} is 1 of cargo *i* is transported on different ships
- P₁ is the *cargo-ship* penalty
- P_2 is the *cargo-time* penalty

$$P(A) = \sum_{i \in N_{P}} P_{1i} \cdot U_{i}^{AB} + \sum_{i \in N} P_{2i} \left| T_{i}^{A} - T_{i}^{B} \right|$$

Distance Measure

• Proportion of cargoes *i* that have changed ship between plans A and B

$$D_{AB} = \frac{1}{N} \cdot \sum_{i \in \mathbb{N}_P} U_i^{AB}$$

Solution Process

- The solver has a constructive and an iterative phase
- The *Persistence Penalty Function* is included in the Move Evaluation Function when *solving*
- The *Distance* measure is used on two occasions:
 - First it is used to identify a diverse set of start solutions
 - Secondly it is used to identify the set of solutions to present to the user

Test Cases

-

Case	1	2	3	4
Planning horizon [days]	30	30	90	150
# cargoes	24	31	17	40
# optional spot cargoes	4	4	4	6
# ships	7	13	5	6

Persistence Penalty as a function of time

VIP 2008 - Oslo - 14 june 2008

OLEN

Iniversit

VIP 2008 - Oslo - 14 june 2008

Different Start Solutions – case 2

VIP 2008 - Oslo - 14 june 2008

Different Final Solutions – case 2

Conclusions

- Using solution attributes to distinguish between solutions seems to be good.
- Measures based on these values can be used in different settings
- This is much closer to what a DM wants (or how she works) than just looking at the objective function value.