Calculating time-dependent travel times for VRPs

Oddvar Kloster SINTEF ICT

Applied Mathematics

.

Goal

Solving the Dynamic Shortest Path Problem

- Dynamic = link travel times vary with time
- Shortest = fastest/cheapest/...
- Relevant aspects of travelling in a road network should be modelled
- Should handle networks of size ≈ all of Norway
- Solver should be suitable as a module in a VRP solver

VRP solver environment

- Either departure time or arrival time may be given
- The set of possible locations is known in advance
- The interval of possible departure/arrival times is (usually) known in advance
- Many identical requests
- but still very many distinct requests
- Speed is essential
- Most requests are for time and cost only

Road network modelling

- One way roads
- Turning restrictions
- Restrictions on whether vehicle may use road (possibly time-dependent)
- Time-dependent travel times
 - Gradual changes (e.g. rush hour)
 - Abrupt changes (e.g. ferry timetables)

-

Computational Model

Road network is transformed into a directed graph

- One way roads
- Turning restrictions
- Each edge has a cost function
 - Time-dependent cost and travel time
- Compute node labels (cost functions) by adapted Dijkstra
- Find shortest path by backtracking

Cost functions

• "Normal" formulation: c = f(t), d = g(t)

- Function $D^2 \rightarrow [0, \infty]$
- D: Time domain of interest
- C(t₁, t₂) is the cost of travel when departing at time t₁ and arriving at time t₂
- C(t_1, t_2) = ∞ : Illegal/impossible
- $t_2 < t_1 : C(t_1, t_2) = \infty$

.

Applied Mathematics

8

Cost function operators

in 📕

- Computes optimal cost function over alternative paths
- Pointwise minimum

+

SINTEF

- Computes optimal cost function for concatenation of paths
- Minimum of $C_{AB}(t_1, t_2) + C_{BC}(t_2, t_3)$ over t_2

Closed semiring

→ B

. . .

Cost function form

Functions $D^2 \rightarrow [0, \infty]$ in general are intractable

- Must choose a subspace such that
 - Functions can be represented
 - min and + are closed

Cost function form

More advanced: several curves with different cost

- Computationally heavy
- Curves multiply
 - Eliminate dominated curves
 - Keep only fastest and cheapest
 - Approximate
- Points multiply
 - Eliminate redundant points
 - Approximate

Reducing network size

- Cost function operations are expensive
- Norwegian road network: >1M road links
- Hierarchical decomposition into subnetworks
- Only required networks are included in computation

Thoroughfares

- Network is partitioned into topologically compact regions
- If neither origin nor destination is in region, some roads cannot be part of optimal path
- Thoroughfare is remainder of network in region
- Computation uses full networks in origin and destination regions, and thoroughfare in other regions
- Does not affect optimal solution if done exactly
 - Tradeoff between exactness and preprocessing time

Thoroughfare example

Thoroughfare sizes

Example computation network

Architecture

() SINTEF

.

Future work

More realistic testing

- Use real travel time data
- Use in VRP
- Better cost function mechanics
 - Other cost function subspaces
 - Better time/space optimization

