

#### When Feasibility of Routes is Difficult to Determine: an Example from Maritime Bulk Shipping

Lars Magnus Hvattum<sup>1</sup>, Kjetil Fagerholt<sup>1</sup>, and Vinícius A. Armentano<sup>2</sup>

<sup>1</sup> Norwegian University of Science and Technology (NTNU), Norway <sup>2</sup> Universidade Estadual de Campinas, Brazil



### Main Problem



### **Vessel Routes**



## **Possible Solution**





# Constraints (1)

- Each cargo must be allocated to one or several tanks
- Cargo quantity must not exceed the total capacity of these tanks
  - Volume
  - Weight





## Constraints (2)

• Tanks have different coatings, and cargos can only be allocated to tanks with compatible coatings





## Constraints (3)

- It is not allowed to move a cargo between tanks after it has been loaded
- It is not allowed to mix cargos, even if it is the same product, in the same tank
- At the beginning of the planning horizon, some tanks may be already occupied by some cargos that have not yet been unloaded
- It may be prohibited to have tanks that are only half-full, in order to avoid sloshing cargos



## Constraints (4)

 There are requirements with respect to the stability (A, B) and strength (C) of the ship





## Constraints (5)

- Due to hazmat rules, certain products cannot be allocated to neighboring tanks
- Due to hazmat rules, certain products cannot be onboard the same vessel at the same time
- Due to hazmat rules, certain products cannot be allocated in sequence to the same tank, except if the tank has been cleaned or the tank has been used by a number of other cargos in between



## Model for the Single Instant TAP

$$\begin{aligned} b_t x_{lt} &\leq y_{lt} \leq c_t x_{lt} & (l \in \mathbf{L}, t \in \mathbf{T}_1) \\ &\sum_{t \in \mathbf{T}_1} y_{lt} = v_l & (l \in \mathbf{L}) \\ &\sum_{l \in \mathbf{L}_t} x_{lt} \leq 1 & (t \in \mathbf{T}) \\ &\sum_{k \in \mathbf{L}_1} \sum_{u \in \mathbf{T}_{1\mathbf{kt}}} x_{ku} \leq M_{lt} (1 - x_{lt}) & (l \in \mathbf{L}, t \in \mathbf{T}_1) \\ &m^{s-} \leq \sum_{l \in \mathbf{L}} \sum_{t \in \mathbf{T}_1} m_t^s (w_l / v_l) y_{lt} \leq m^{s+} & (s \in \mathbf{S}) \end{aligned}$$

$$\begin{aligned} x_{lt} \in \{0, 1\} & (l \in \mathbf{L}, t \in \mathbf{T}_1) \\ y_{lt} \geq 0 & (l \in \mathbf{L}, t \in \mathbf{T}_1) \end{aligned}$$



#### Model for the Tank Allocation Problem

$$\begin{aligned} b_t x_{lt} &\leq y_{lt} \leq c_t x_{lt} & (l \in \mathbf{L}, t \in \mathbf{T}_{\mathbf{l}}) \\ &\sum_{t \in \mathbf{T}_{\mathbf{l}}} y_{lt} = v_l & (l \in \mathbf{L}) \\ &\sum_{k \in \mathbf{L}_t \cap \mathbf{N}_1} x_{kt} \leq 1 & (l \in \mathbf{L}, t \in \mathbf{T}) \\ &\sum_{k \in \mathbf{L}_t \cap \mathbf{N}_1} \sum_{u \in \mathbf{T}_{\mathbf{lk}^*}} x_{ku} \leq M_{lt} (1 - x_{lt}) & (l \in \mathbf{L}, t \in \mathbf{T}_{\mathbf{l}}) \\ &m^{s-} \leq \sum_{l \in \mathbf{R}} \sum_{t \in \mathbf{T}_1} m_t^s (w_l / v_l) y_{lt} \leq m^{s+} & (\mathbf{R} \in \mathbf{Q}, s \in \mathbf{S}) \\ &h_{lkt} (x_{lt} - z_{lt}) - \sum_{j \in \mathbf{R}} (x_{jt} + h_{lkt} z_{jt}) \leq h_{lkt} (1 - x_{kt}) & k \in \mathbf{P}_1 \cap \mathbf{L}_1, \\ &\mathbf{R} = \mathbf{P}_1 \smallsetminus \mathbf{P}_k \smallsetminus \{k\}) \\ &x_{lt} \in \{0, 1\} & (l \in \mathbf{L}, t \in \mathbf{T}_1) \end{aligned}$$

 $y_{lt} \ge 0 \qquad (l \in \mathbf{L}, t \in \mathbf{T}_1)$  $z_{lt} \in \{0, 1\} \qquad (l \in \mathbf{L}, t \in \mathbf{T}_1)$ 



## **Objective functions**

• Minimize the number of cleaned tanks

$$\min z = \sum_{l \in \mathbf{L}} \sum_{t \in \mathbf{T}_l} z_{lt}$$

- Maximize capacity of vacant tanks during the vessel route?
  - increasing flexibility for future changes in the route
- Maximize the probability of being able to accept future transportation requests?
  - must take all vessel routes into consideration
- Anyway, feasibility is more important!



## **Computational Complexity**

- Finding a feasible solution is NP-complete
  - even when considering a single instant of the vessel route
    - i.e., can a given set of cargos be present on the ship simultaneously, disregarding the sequence of loading/unloading?
  - even if disregarding
    - all hazmat regulations
    - all stability/strength restrictions
    - anti-sloshing constraints
  - even if allowing loads to be mixed in tanks
    - proofs of NP-completeness then use either hazmat constraints or stability/strength constraints



## **Test Instances**

- First, how much time is required to solve realistically sized instances?
- Instances generated by varying
  - Ship configuration (24 tanks or 38 tanks)
  - Number of loads (10, 20, or 30)
  - Load categories (0%, 10%, 20%, or 30% of loads are hazardous)
  - Min/max levels of ship utilization (65%, 75%, or 85% full)
  - Size of loads (1-5, 3-9, or 8-16 thousand tons)
- All instances include a history of 10 loads (some of which may still be present on the ship)
- Stability w.r.t. roll is enforced



## Results using CPLEX

#### • Two different objective functions

- obj1: minimize the number of tank cleanings
  - potential problem: little guidance when branching
- obj2: maximize average free capacity during the voyage

|               | obj1         | obj2         |
|---------------|--------------|--------------|
|               | not feasible | not feasible |
| > 600 seconds | 4            | 3            |
| > 100 seconds | 13           | 9            |
| > 10 seconds  | 43           | 48           |
| > 1 second    | 165          | 174          |
| in total      | 720          | 720          |



## Which Dimensions Matter?

|         |           |          | obj1           | obi2                     |           |
|---------|-----------|----------|----------------|--------------------------|-----------|
| subset  | instances | feasible | seconds        | op more loads = more dif | ficult    |
| TAP     | 720       | 716      | 4.13           | 561 717 5.12             | 40        |
| L20     | 240       | 240      | 1.11           | 231 240 0.57             | 38        |
| L30     | 240       | 239      | 2.21           | 100 020 0.41             |           |
| L40     | 240       | 237      | 9.14           | more hazmat = more       | difficult |
| C1      | 180       | 177      | 0.35           | 177 180 0.97             | 15        |
| C2      | 180       | 179      | 2.23           | 165 180 5.40             | 7         |
| C3      | 180       | 180      | $4.00^{\circ}$ | higher ship utilization  | = unclear |
| C4      | 180       | 180      | 9.88           | 95 179 10.75             | 12        |
| F1      | 240       | 239      | 2.81           | 190 238 3.88             | 20        |
| F2      | 240       | 240      | 5.14           | 187 239 8.65             | 9         |
| F3      | 240       | 237      | 4.45           | smaller loads = more     | difficult |
| T24/S3  | 180       | 180      | 1.21           | 130 178 1.34             | 14        |
| T24/S6  | 180       | 180      | 0.23           | more tanks - more o      | lifficult |
| T38/S6  | 180       | 176      | 12.79          |                          | inicult   |
| T38/S12 | 180       | 180      | 2.50           | 145 180 3.84             | 10        |
|         |           |          |                |                          |           |

## Solving TAPs and Future Work

- Most realistically sized instances solved by CPLEX within 1 second
  - OK if the goal is to find a feasible stowage plan
- Some instances cannot be solved within 10 minutes
   CPLEX is not robust
- We can try to modify branching priorities to see if this can guide CPLEX in the difficult cases?
- We can try Constraint Programming solvers?
- We can develop special heuristics that might be better suited to find feasible solutions?



## 1) Finding Stowage for a Route



# 2) Finding Routes and Stowage Together?



## Solving the Main Problem

- For now we focus on the subproblem, TAP
- Eventually, the goal is to solve the main problem: finding the best vessel routes with a feasible stowage plan
- We know that metaheuristic search, such as Tabu Search, works well for routing problems
  - Efficient neighborhood exploration
- What is the best strategy when evaluating a neighbor is NP-complete?



## **Future Research**

#### Improved neighborhood exploration

- First Improvement
- Neighborhood reductions
  - Granular Tabu Search
- Surrogate Evaluation
  - Delay evaluation of stowage plan
  - How to handle infeasible stowage problems?
- Improved solution methods for the stowage problem
  - Use the stowage plan of current solution as a starting point for finding a stowage plan when evaluating a neighboring solution
- Other?





#### When Feasibility of Routes is Difficult to Determine: an Example from Maritime Bulk Shipping

Lars Magnus Hvattum<sup>1</sup>, Kjetil Fagerholt<sup>1</sup>, and Vinícius A. Armentano<sup>2</sup>

<sup>1</sup> Norwegian University of Science and Technology (NTNU), Norway <sup>2</sup> Universidade Estadual de Campinas, Brazil

