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The Single-Vehicle VRP with Stochastic Demands

• A stochastic VRP in which a single capacitated vehicle must deliver (unknown) demands
to a set of customers.

• Customers demands are revealed only when the vehicle arrives at a given location.

• The vehicle follows an a priori (TSP) tour, until it returns to the depot or it cannot meet the
demand of a customer (route failure).

• When a failure occurs, the vehicle returns to the depot to get replenished (recourse action).

• A special case of the classical VRPSD.

• More complex recourse strategies (e.g., various restocking schemes) could be handled in
the same fashion.



Notation

• G(V,E): an undirected graph

• V = {v1, . . . , vN}: the set of vertices

• E = {(vi, vj) : vi, vj ∈ V, i < j}: the set of edges

• v1: the a depot where the vehicle must start and finish its route

• ξj , j ∈ V \ {v1}: (stochastic) demand of customer j

• D: capacity of the vehicle

• C = [cij ]: travel costs between vertices

• f =
N∑

j=1

E[ξj ]/D: expected filling rate of the vehicle



Formulation

Min
∑
i<j

cijxij +Q(x) (1)

s.t.
N∑

j=2

x1j = 2, (2)∑
i<k

xik +
∑
j>k

xkj = 2, k = 2, . . . , N, (3)∑
i∈S

∑
j /∈S, j>i

xij +
∑
i/∈S

∑
j∈S, j>i

xij ≥ 2, S ⊆ V, |S| ≥ 3, (4)

xij ∈ {0, 1}, 1 ≤ i < j ≤ N. (5)

• Q(x) is the recourse function, which gives the expected cost of recourse.

• Constraints (2) and (3) ensure that the route starts and ends at the depot and that each
customer is visited once.

• Inequalities (4) are the subtour elimination constraints.



Previous Work – Exact methods

• Gendreau, Laporte, and Séguin (1995): application of 0–1 integer L-shaped algorithm.

• Hjorring and Holt (1999): introduction of a new type of cuts that use information taken from
partial routes.

• Rei, Gendreau, and Soriano (2006): new inequalities based on local branching for the
0–1 integer L-shaped algorithm; excellent results on instances with Normal (independent)
demands.

Instances where both the filling rate and the number of customers are large still present a
tremendous challenge which justifies the development of efficient heuristics for this problem.



Previous Work – Heuristics (Related Problems)

• Gendreau, Laporte, and Séguin (1996): tabu search procedure for routing problems where
customers and demands are stochastic.

• Yang, Mathur, and Ballou (2000): heuristics for routing problems with stochastic demands
for which restocking (returning to the depot before visiting the next customer) is consid-
ered.

• Bianchi et al. (2005): several metaheuristics for stochastic routing problems that allow
restocking.

• Secomandi (2000, 2001): neuro-dynamic programming algorithms for the case where re-
optimization is applied.

• Chepuri and Hommem-De-Mello (2005): cross-entropy method to solve an alternate for-
mulation (some customers may not be serviced, but at a penalty).



Monte Carlo Sampling in Stochastic Programming

Linderoth, Shapiro, and Wright (2006) distinguish two types of approaches:

• Interior approaches solve the problem at hand directly, but whenever the algorithm be-
ing used requires information concerning the recourse function, sampling is applied to
approximate this information.

– Dantzig and Glynn (1990): sampling in the L-shaped algorithm to estimate cuts

– Higle and Sen (1996): stochastic decomposition

– Ermoliev (1988): stochastic quasi-gradient methods (sampling used to produce a quasi-
gradient from which a descent direction is obtained)

• In the exterior approach, one uses sampling beforehand as a way to approximate the
recourse function (next slide).



Sampling the Recourse Function

• We want to solve min
x∈X

f(x) = Eξ[c>x + Q(x, ξ(ω))] = c>x + Eξ[Q(x, ξ(ω))].

• Let {ω1, . . . , ωn} be a subset of randomly generated events of Ω, then f̂n(x) = c>x +
1
n

n∑
i=1

Q(x, ξ(ωi)) is a sample average approximation of f(x).

• One may now define the approximating problem as min
x∈X

f̂n(x).

• Mak, Morton, and Wood (1999): the average value of the approximating problem over all
possible samples is a lower bound on the optimal value of the problem.

• Similarly, if x̃ is a feasible first-stage solution, then E
[
f̂n(x̃)

]
≥ f(x̃).



Sampling the Recourse Function (con’d)

• By using unbiased estimators for E
[
min
x∈X

f̂n(x)
]

and for E
[
f̂n(x̃)

]
, one can construct con-

fidence intervals on the optimal gap associated with x̃.

• Unbiased estimators can be obtained by using batches of subsets {ω1, . . . , ωn}. Let f̂ j
n be

the jth sample average approximation function using a randomly generated subset of size

n and let v̂j
n = min

x∈X
f̂ j

n(x), for j = 1, . . . ,m. Then Ln
m = 1

m

m∑
j=1

v̂j
n and Un

m = 1
m

m∑
j=1

f̂ j
n(x̃)

can be used to estimate the gap associated with x̃.

• Under certain conditions, if x̂n is an optimal solution to problem min
x∈X

f̂n(x), then it can be

shown that x̂n converges with probability 1 to the set of optimal solutions to the original
problem as n →∞.

• Shapiro and Homem-De-Mello (2000): when the probability distribution of ξ is discrete,
given some assumptions, x̂n is an exact optimal solution for n large enough.



The Sampling Average Approximation Method

• Kleywegt, Shapiro, and Homem-De-Mello (2001): definition of the sample average ap-
proximation (or SAA) method

– Randomly generate batches of samples of random events.

– Solve the approximating problems (each solution obtained is an approximation of the
optimal solution to the original stochastic problem).

– Estimates on the optimal gap using bounds Ln
m and Un

m are then generated to obtain a
stopping criterion.

– n may be increased if either the gap or the variance of the gap estimation is to large.

• The SAA method was adapted for the case of stochastic programs with integer recourse
by Ahmed and Shapiro (2002).

• Linderoth, Shapiro, and Wright (2006): numerical experiments using the SAA method that
show the usefulness of the approach.



Local Branching

• A method introduced by Fischetti and Lodi (2003) to take advantage of the fact that certain
generic solvers (e.g., CPLEX) are quite efficient to solve small integer 0-1 problems.

• Therefore, one can divide the feasible region of a problem into a series of smaller sub-
regions and then use a generic solver in order to better explore each of the subregions
created.

• In the case of a 0-1 integer problem, the function used in order to divide the feasible region
is the Hamming distance defined from a given integer point.

• Let us suppose that we are solving min
x∈X

f(x) = c>x +Q(x), where

– X = {x | Ax = b, x ∈ X ∩ {0, 1}n1},

– x0 is vector of 0-1 values such that x0 ∈ X,

– N1 = {1, . . . , n1} and S0 = {j ∈ N1 | x0
j = 1},

the Hamming distance relative to x0 is ∆(x, x0) =
∑

j∈S0

(1− xj) +
∑

j∈N1\S0

xj .



Local Branching (con’d)

• Using function ∆(x, x0), one can divide the feasible region of the problem, by creating two
subproblems, one for which the constraint ∆(x, x0) ≤ κ is added, and the other for which
∆(x, x0) ≥ κ + 1 is added (where κ is a certain fixed integer value).

• Constraint ∆(x, x0) ≤ κ can considerably reduce the size of the feasible region of problem
when value κ is fixed to an appropriate value.

• Therefore, one can use an adapted generic solver in order to solve this subproblem.

• Using the new solution found, the procedure may continue by dividing the subregion de-
fined by ∆(x, x0) ≥ κ + 1 into two more subproblems where the smaller subregion is
explored in the same way as before.

• If the left the problem is infeasible or unattractive, a diversification procedure is applied
(enlarge feasible set).



Monte Carlo Sampling and Local Branching

• When using Monte Carlo sampling to approximate the recourse function, one alleviates
the stochastic complexity of the problem.

• Local branching allows one to control the combinatorial explosion associated with the first-
stage of problem.

• We now show how principles from Monte Carlo sampling and local branching can be com-
bined to form the basis for developing an effective multi-descent heuristic for the SVRPSD.



Local Branching with Sampling

A straighforward approach:

• Use a fixed-size sample of scenarios to represent demand uncertainty; this defines a
simpler SVRPSD, which is just a fairly large MIP.

• Solve this MIP with Fischetti and Lodi’s procedure.

This is not what we will do.



An Important Insight

• In “reasonable” instances of the VRPSD, the expected number of failures, while significant,
is still low.

• This implies that the cost of the a priori routes will in general amount for a large fraction of
the overall objective.

• When there is only one vehicle, the a priori route is just a traveling salesman tour on the
depot and the customers.

• Thus, our optimal first-stage solution has to be a pretty good solution to the TSP.

• In fact, we can interpret this solution as an optimal TSP solution “adjusted” to account for
possible failures.



Multi-descent Scheme

• Could be used without sampling if computing the recourse function exactly was tractable.

• The search is structured around fixed-depth descents according to the local branching
scheme.

• The very first base descent starts from the solution of TSP defined on the depot and the
customers.

• To induce diversification, descents after the first one are initiated by solving the TSP to
which we add the local branching constraints for the right-hand side branch of all descents
performed (all cuts previously found are also included).



Descent Structure

• As indicated descents are of fixed depth; new samples of realizations are drawn for each
local branching problem.

• The local branching problem is solved using the branch-and-cut algorithm of Rei, Gen-
dreau, and Soriano (2006) with

1. subtour elimination constraint,

2. partial route cuts

3. local branching cuts



Test Problems

• The problem generator used follows the same principles as the one proposed in Hjorring
and Holt (1999).

• Graph vertices were generated in a [0, 100]2 square following uniform distributions and the
cost matrix was then set to be the Euclidean distances between vertices.

• Each customer was assigned an average demand following a [1, 10] uniform distribution
and the standard deviation was set to be 30% of the mean.

• Problems of sizes n = 60, 70, 80, 90 were created.

• For each size, five instances were generated for which f = 1.025, 1.05, 1.075, 1.10.

• 60 instances (difficult ones were selected).

• Additional tests were made on 20 instances of size 150.

• All experiments were performed on a 2.4 GHz AMD Opteron 64-bit processor.



Computational Experiments

• The experiments are organized in three phases.

• First phase: determination of the best value for the size of the neighbourhoods (κ) and the
number of scenarios (n) that should be used to solve the local branching subproblems.

• Second phase, analysis of how results vary when the number of descents is increased.

• Also, comparison of the multi-descent scheme with the L-shaped algorithm of Rei et al.
and with the Or-opt algorithm described in Yang et al. (2000).

• The initial solution for the Or-opt heuristic is obtained by applying a greedy insertion pro-
cedure.

• From this initial route, the Or-opt exchange algorithm is then called to improve the solution.

• Or-opt moves are evaluated exactly (i.e., using the original recourse function).

• Third phase: all algorithms are tested and compared on the larger problems generated
(i.e., N=150).

• All results for the multi-descent heuristic algorithm are average values over five runs.

• All experiments were performed on a 2.4 GHz AMD Opteron 64-bit processor.



κ = 4 κ = 6 κ = 8

N f nb. i. n = 100 n = 200 n = 300 n = 100 n = 200 n = 300 n = 100 n = 200 n = 300

60 1.025 1 1314.54 1313.2 1312.43∗† 1314.72 1313.72 1312.43∗† 1314.32 1312.43∗† 1312.43∗†
1.050 3 1347.5 1344.68∗ 1346.85 1344.34 1343.24∗ 1345.85 1341.08∗† 1343.21 1343.47
1.075 5 1333.97 1334.05 1333.74∗ 1332.26 1332.28 1331.99∗† 1332.99 1333.06 1332.88∗
1.100 5 1343.14 1343.13 1341.96∗ 1338.03 1337.96∗† 1339.03 1341.01 1340.2∗ 1340.41

70 1.025 3 1434.6∗ 1434.72 1434.82 1430.89∗† 1433.67 1433.53 1433.25 1433.13 1432.38∗
1.050 3 1401.91 1401.51 1401.33∗ 1401.8 1401.11∗† 1401.8 1401.74 1401.3 1401.19∗
1.075 5 1455.5 1454.82∗ 1454.82∗ 1444.4 1442.78∗ 1445.72 1443.68 1442.68∗† 1443.89
1.100 4 1498.74 1497.45∗ 1499.62 1495.57 1498.28 1495.25∗ 1496.08 1494.53∗† 1495.1

80 1.025 2 1483.34 1481.99∗† 1485.77 1482.98∗ 1483.06 1483.17 1483.09 1482.94∗ 1483.92
1.050 2 1494.04∗ 1494.43 1494.6 1494.18 1494.03 1493.93∗† 1494.72 1493.96 1493.93∗†
1.075 5 1491.76∗ 1491.87 1491.95 1487.55∗ 1488.32 1488.13 1487.23 1486.55∗† 1487
1.100 5 1503.97 1501.01 1500.12∗ 1495.02 1494.89 1494.09∗† 1494.19∗ 1494.36 1496.33

90 1.025 2 1576.52 1577.63 1575.63∗ 1575.27∗ 1575.31 1575.63 1574.74 1573.96 1573.08∗†
1.050 5 1606.11 1606.29 1605.87∗ 1605.56∗ 1606.56 1606.45 1604.73∗† 1604.96 1605.58
1.075 5 1605.54∗ 1606.28 1605.92 1604.48 1604.62 1603.92∗ 1602.51 1602.01∗† 1604.73
1.100 5 1598.81∗ 1599.23 1599.41 1599.02 1598.76 1598.59∗ 1596.54∗† 1596.55 1596.71

Local best (∗) 5 4 8 5 4 7 4 7 6
Absolute best (†) 0 1 1 1 2 4 3 5 3

Table 1: The effect of κ and n on the quality of the solutions obtained for one descent



N Category nb. i. L-Shaped M-LB-2 M-LB-4 M-LB-6 M-LB-8 Or-Opt
Val. Gap Val. Gap Val. Gap Val. Gap Val. Gap Val. Gap

60 sol. 9 1336.88 0.98% 1338.77 1.12% 1337,87 1.06% 1337,25 1.01% 1336,67 0.97% 1399,19 5.39%
not sol. 5 1324.93 2.06% 1330.96 2.51% 1328.92 2.36% 1328.67 2.34% 1328.45 2.32% 1355.86 4.30%

70 sol. 6 1409.93 0.95% 1411.54 1.06% 1410.25 0.97% 1410.32 0.97% 1408.59 0.85% 1471.73 5.11%
not sol. 9 1469.13 1.64% 1469.41 1.66% 1467.35 1.52% 1466.90 1.49% 1466.59 1.47% 1525.39 5.27%

80 sol. 7 1463.69 0.97% 1466.58 1.16% 1466.30 1.15% 1465.58 1.10% 1464.71 1.04% 1533.07 5.45%
not sol. 7 1517.92 3.54% 1511.70 3.15% 1510.00 3.04% 1508.60 2.95% 1507.83 2.90% 1588.56 7.83%

90 sol. 3 1606.30 0.96% 1606.84 0.99% 1605.79 0.92% 1605.65 0.92% 1605.59 0.91% 1662.59 4.31%
not sol. 13 1592.46 2.46% 1594.13 2.56% 1592.53 2.46% 1591.51 2.40% 1590.75 2.35% 1644.35 5.53%
und. 1 - - 1618.76 1.80% 1618.56 1.79% 1618.56 1.79% 1618.56 1.79% 1699.13 6.44%

Total sol. 25 1422.25 0.97% 1424.19 1.10% 1423.35 1.04% 1422.93 1.01% 1422.05 0.95% 1485.69 5.20%
not sol. 34 1505.13 2.42% 1505.44 2.44% 1503.64 2.32% 1502.80 2.27% 1502.24 2.23% 1558.95 5.79%

Table 2: Average Solution Quality (value and optimal gap)



N Category nb. i. L-Shaped M-LB-2 M-LB-4 M-LB-6 M-LB-8 Or-Opt

60 sol. 9 25.39 5.77 12.04 18.31 24.59 0.48
not sol. 5 100.62 6.60 13.23 20.16 26.68 0.55

70 sol. 6 11.39 7.56 14.82 23.02 30.36 0.94
not sol. 9 100.26 12.30 24.72 37.03 50.29 0.88

80 sol. 7 23.81 15.24 29.94 44.92 60.62 2.18
not sol. 7 100.30 18.64 38.28 57.67 78.13 2.13

90 sol. 3 28.69 16.51 33.79 53.48 72.27 3.35
not sol. 13 100.30 24.78 50.52 76.24 102.20 3.78
und. 1 104.91 24.26 53.96 95.05 121.74 3.57

Total sol. 25 21.98 10.14 20.33 31.11 41.78 1.41
not sol. 34 100.33 17.54 35.69 53.79 72.40 2.20

Table 3: Average Solution Times (min.)



N f Category nb. i. L-Shaped M-LB-2 M-LB-4 M-LB-6 Or-Opt
Val. Gap Val. Gap Val. Gap Val. Gap Val. Gap

150 1.025 sol. 1 1955.09 1.00% 1947.50 0.61% 1947.50 0.61% 1947.50 0.61% 2041.48 5.19%
not sol. 4 1911.30 1.67% 1898.93 1.03% 1898.35 1.00% 1898.24 0.99% 2020.59 6.99%

150 1.050 sol. 1 1904.16 0.99% 1919.45 1.77% 1914.71 1.53% 1908.98 1.24% 2029.01 7.08%
not sol. 4 1956.94 2.67% 1957.04 2.67% 1956.18 2.63% 1954.54 2.55% 2044.62 6.85%

150 1.075 not sol. 5 1992.79 3.41% 1984.81 3.02% 1984.32 3.00% 1983.01 2.93% 2100.94 8.37%

150 1.100 not sol. 5 1983.74 3.22% 1988.45 3.43% 1982.86 3.15% 1981.85 3.10% 2082.83 7.79%

Total sol. 2 1929.63 0.99% 1933.47 1.19% 1931.11 1.07% 1928.24 0.92% 2035.25 6.13%
not sol. 18 1964.20 2.80% 1960.57 2.61% 1958.55 2.51% 1957.52 2.46% 2065.54 7.56%

Table 4: Results on larger problems: average solution quality (value and optimal gap)



N f Category nb. i. L-Shaped M-LB-2 M-LB-4 M-LB-6 Or-Opt

150 1.025 sol. 1 33.81 24.00 45.60 76.73 33.82
not sol. 4 302.44 55.65 104.83 160.31 43.24

150 1.050 sol. 1 225.97 75.41 154.29 227.22 41.86
not sol. 4 303.97 78.64 154.12 236.77 44.27

150 1.075 not sol. 5 302.77 79.33 163.76 246.26 41.11

150 1.100 not sol. 5 301.36 79.50 158.71 238.69 36.11

Total sol. 2 129.89 49.70 99.95 151.97 37.84
not sol. 18 302.57 73.96 147.12 222.95 40.89

Table 5: Results on larger problems: average solution times (min.)



Conclusion

• We have proposed a new hybrid algorithm that combines both local branching principles
and Monte Carlo sampling in a multi-descent search strategy for integer 0-1 stochastic
programming problems.

• By controlling simultaneously the inherent complexities associated with both the first-stage
problem and the recourse function, one is able to better limit the effort needed to solve the
approximating subproblems.

• Furthermore, by using the local branching constraints in order to obtain diversification for
the search strategy, one is able to better explore the feasible region of the original problem.

• This method was specialized to the case of the SVRPSD and was proven to be quite
effective to solve hard instances of the problem.

• However, the algorithmic principles that were used are all quite general.

• In future work, it would be interesting to see how one could adapt these ideas to other
stochastic programming problems.
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