

Routing in maritime logistics

Truls Flatberg and Oddvar Kloster SINTEF ICT

Outline

Maritime routing

Pickup and delivery variations

- Free delivery location
- Predefined number of visits
- Inter arrival gap
- Generic library for maritime routing
 - Conceptual model
 - Construction heuristics
 - Computational results

Maritime routing

Pickup and delivery

- No depot structure
- Spot cargoes (pickup, delivery or both)
- Combined with inventory planning
 - Vessel size comparable to inventory capacity
 - Comparable number of supply and demand ports
- Contractual aspects
 - Volume limits over periods
 - Destination restrictions
 - Complex pricing mechanisms
 - Slots (time windows)
- Market considerations
 - Interaction with market prices
 - Downstream system
- Heterogeneous fleet

Pickup with free delivery location

- Assume homegenous fleet and full ship loads
- PDP, but delivery location is not set
- Income is destination dependent
- Cost on each sailing leg
- Maximize profit

ICT

Pickup orders Delivery locations

VRP transformation

P: pickup orders D: delivery locations c_{ik} : sailing cost going from *i* to k r_{ik} : income by sending order *i* to k

■
$$d_{ij} = min_{k \in D} (c_{ik} + c_{kj} - r_{ik})$$

$$\bullet \quad \mathbf{d}_{0i} = \mathbf{0}$$

$$\mathbf{d}_{i0} = \min_{\mathbf{k} \in D} \left(\mathbf{c}_{i\mathbf{k}} - \mathbf{r}_{i\mathbf{k}} \right)$$

Then the problem is equivalent to an asymmetric VRP (TSP)

Extensions

- Introduce a sailing time t_{ik}
- Multiperiod problems \Rightarrow VRPs with time windows
- Time dependent income travel cost (and scheduling)

Extensions

- Given number of visits in each delivery location a bipartite graph
- Minimum inter arrival gap ⇒ VRP with time separation on service time of orders

A generic library for maritime routing

- Invent software library for maritime routing problems
- Developed as part of a strategic project in SINTEF
- Three test application areas
 - LNG transport
 - Bulk (cement) transport
 - Chemical (petroleum) tankers
- Based on a conceptual model
 - Realized as an XML format

Conceptual model

Solution structure

Port call

ICT

Action

Constraints summary

- Time: Sailing time, load/unload rate, non-overlapping actions, cleaning time
- Inventory: Consistency of inventory levels, production/consumption, load/unload quantities and ship loads across actions
- Min/max inventory levels in port storages until last action
- Ship: Capacity, tank cleaning, tank/product compatibility, maintenance periods, draft limits, port compatibility, boiloff
- Bookings: time window, quantity interval
- Contracts: volume limits, destination restrictions, nominal volume, time slots

Objectives summary

- Sailing cost: ship and load dependent
- Port cost: ship dependent
- Service cost: duration of port call
- Waiting cost: ship dependent
- Cleaning cost: product/product dependent
- Contract income: quantity, time and destination/origin dependent
 - Profit sharing: purchase price can depend upon sales price
- Booking income: lumpsum, rate and relet cost
- Stream income: time dependent

Constructive heuristic

- 1. Determine the most critical storage (contract) or visit
- 2. Determine counterpart storage or visit that can receive/deliver the product involved
- **3.** For each ship:
- 4. For all possible insertion points for a pickup and a delivery action into the ship's schedule:
- 5. Insert actions and attempt to assign times and quantities to make plan feasible
- 6. Select the best feasible insertion from step 5 and add to plan permanently

ICT

7. If critical events still exist, go to step 1

Step 5 (assign time and quantity)

Large parts of the plan may be affected

- Schedule for selected ship changes after new load action
- Schedules for other ships are unchanged
- Schedules may change for port storages visited by selected ship
- Many constraints to satisfy
- Roughly:
 - Assume small quantity and propagate time
 - Find maximum possible quantity
 - Do tank allocation
 - Set quantity, propagate time and quantities
 - Check feasibility

Step 6 (select insertion)

Each feasible insertion is ranked by criteria:

- Quantity, q
- Extra time, t
- Ship exploitation, q/Q
- Efficiency, q/t
- Cost efficiency, c/q
- Income, r
- Income efficiency, r/q
- Random

Each criterion has a weight

Select insertion with least sum of weighted ranks

Example

w = 0.5

w = 0.3

(1) A	0.3	
(2) C	0.6	
(3) B	0.9	

А	1.0	0.3	1.3
В	0.5	0.9	1.4
С	1.5	0.6	2.1

.

ICT

Genetic algorithm

- Individual = genome + phenotype
- Genome = a set of weights for rankings
- Phenotype = solution constructed by heuristic
- Fitness = solution's objective value

Genetic algorithm

- Start with P (=20) individuals from constructive heuristic with randomly generated genomes
- 2. Generate N (=40) new individuals
 - Select two individuals (parents) randomly

- Generate new individual using the constructive heuristic
- 3. Take the *E* (=4) best individuals from the existing population(*elitism*)
- 4. Add the *N* new individuals to the population
- 5. Reduce the population to the *P* individuals with best fitness

Computational results

Real problem

- 5 production ports (1-6 storages at each port)
- 30 consumption ports (1-4 storages at each port)
- 61 storages (49 consumption and 12 production storages)
- 11 product typs
- 5 ships with 2 8 cargo holds (total capacity 23.300 tons)
- 14 days planning horizon
- Feasible and reasonable solutions obtained for the real problem
- CPU time: Less than 15 minutes for 1000 individuals

Example run with GA

Current and future work

Additional model elements

- Virtual (accounting) storages
- Inter arrival gaps
- Constraints on the number of visits
- LNG specific extensions (buoys)

Algorithmic enhancements

- Ruin-and-recreate
- Local search
- Constraint programming
- Backtracking in construction

