Vehicle routing problems with alternative paths

Dominique Feillet University of Avignon (moving soon to Ecole des Mines de Saint-Etienne)

Co-authors: T. Garaix, C. Artigues, D. Josselin

Outline

- Data modeling in vehicle routing problems
- Methodological impact of the introduction of alternative paths
- Practical impact on computing times and quality of results

Data collection from a Geographical Information System

- Too many pieces of information delivered by the GIS
 - every consistent portion of road is described
- Usual approach for vehicle routing:
 - introduce a vertex for every important location (depot, customer location...)
 - consider the best route between every pair of vertices

Limit

- How to compute the best route between two vertices when arcs are described with more than one attribute?
 - multicriteria shortest path problem
 - the solution is a set of Pareto efficient solutions

Illustration: VRPTW

From St Olavs Gate To Grefsen-Kjelsas

Route A: **7 kilometers (cost)** 15 minutes

Route B: 5 kilometers (cost) 20 minutes

Illustration: VRPTW

Route Olavs – Grefsen - Olavs

Feasible, cost 14 kms

Unfeasible

Illustration: VRPTW

Route Olavs – Grefsen - Olavs

Feasible, cost 14 kms

Feasible, cost 10 kms

7

Multigraph modeling

Multigraph G=(V,A)

V = set of important locations

An arc (i,j)^k exists in A for every pair of vertices (i,j) and every Pareto efficient path P^k between i and j

Construction of the graph

- difficult to find the set of Pareto efficient paths
 - multicriteria shortest path problem
 - the set might be of very large size
- in practice
 - one can expect a limited number of attributes on arcs
 - one can expect a set of limited size due to correlations
 - one can consider a subset of the efficient set (possibly user-defined)

Finding the sequence of arcs when the sequence of vertices is known is NP-hard

Called Fixed Sequence Arc Selection Problem (FSASP)

= Multidimensional Multiple Choice Knapsack Problem

Addressed as a shortest path problem with resource constraints (in an acyclic graph)

- Three complex decisions when solving vehicles routing on multigraphs
 - assign customers to vehicles
 - sequence customers
 - select arcs (FSASP)

- Heuristic / Metaheuristic
 - Any algorithm can be applied, accepting that evaluating the cost and the feasibility of a solution involves the solution of a FSASP
- Integer programming
 - Classical models can be adapted, with new decision variables (new flow variables for new arcs...)

Computational impact

 Set of random Euclidean instances for a Dial-A-Ride problem

	Simple graph		Multigrap	Multigraph*	
	Best insertion	Exact	Best insertion	Exact	
VALUE	12%	0%	-8%	-17%	

* : generated from a simple graph with 10% of additional arcs about 30% cheaper and slower ; results in a graph with up to 10 times more arcs

Computational impact

 Set of realistic instances (computed from a GIS) for a Dial-A-Ride problem in a rural zone

	Simple graph		Multigra	Multigraph*	
	Best insertion	Exact	Best insertion	Exact	
VALUE	12%	0%	2%	-8%	

* : up to 10 times more arcs, with arcs up to 50% cheaper or slower

Some improvements

- Best insertion
 - Find the best neighbor with the solution of a single Shortest Path Problem with Resource Constraints
 - add a vertex for every possible insertion location
 - add a binary resource that imply to visit exactly one of these vertices

Some improvements

- Exact method
 - Branch and Price
 - The multigraph only impacts:
 - the subproblem: extend labels with every outgoing arcs
 - the branching rule: select or forbid a successor (i.e., a set of parallel arcs)

Computational impact

 Set of random Euclidean instances for a Dial-A-Ride problem

	Simple graph		Multigraph*	
	Best insertion	Exact	Best insertion Exact	
VALUE	12%	0%	-8% -17%	
TIME	0s	100s	10s 1000s	S

 * : generated from a simple graph with 10% of additional arcs about 30% cheaper and slower ; results in a graph with up to 10 times more arcs

Computational impact

 Set of realistic instances (computed from a GIS) for a Dial-A-Ride problem in a rural zone

	Simple graph		Multigrap	Multigraph*	
	Best insertion	Exact	Best insertion	Exact	
VALUE	12%	0%	2%	-8%	
TIME	0s	100s	2s	1000s	

* : up to 10 times more arcs, with arcs up to 50% cheaper or slower

Other improvements

- Exact method
 - When solving the subproblem, replace set of arcs (i,j)^k with a single idealized arc (i,j)
 - c(i,j) = min {c((i,j)^k)
 - t(i,j) = min {t((i,j)^k)
 - A set of promising vertex-sequences are obtained
 - Solve the FSASP on these sequences and only keep the feasible routes of negative reduced cost
 - If no route is obtained, solve the original subproblem

Conclusion

- Improving the completeness of the data is a real issue
 - A very simple heuristic can beat an exact method with the multigraph representation
 - An « automatic » adaptation of the algorithms looks simple most of the times (once the FSASP tool is developed)
 - Some possibilities exist to really consider the multigraph issue in the algorithms

Perspectives

- Evaluate this modeling in other contexts
 - Multimodal transportation (time, cost)
 - Transportation with congestion (time, cost)
 - Tourist tours (time, scenic interest)
- Implement more efficient algorithms