

## Adaptive diversification metaheuristic for the **FSMVRPTW**

Olli Bräysy, University of Jyväskylä Pekka Hotokka, University of Jyväskylä Yuichi Nagata, Advanced Institute of Science and Technology Wout Dullaert, University of Antwerp, ITMMA and AMA

#### STITUTE OF TRANSPORT AND TME MANAGEMENT ANTWERD

#### Overview

- 1. Introduction FSMVRPTW
- 2. Liu and Shen variant of FSMVRPTW
- 3. Recent papers
- 4. New benchmarks
- 5. ESWA solution approach
- 6. New solution approach
- 7. Computational testing
- 8. Conclusions

ITMMA 1. Introduction - FSMVRP INSTITUTE OF TRANSPORT AND MARITIME MANAGEMENT ANTWERP

- · Heterogeneous vehicle fleet
- · different vehicle types with different capacities and acquisition costs
- · Objective: find a fleet composition and a corresponding routing plan that minimizes the sum of routing and vehicle costs.
- Practical applications of FSMVRP

2

- · Various models exist in the literature depending on
  - how the variable costs and fleet size are issued
  - whether there are limits on the number of vehicles of each type

#### ITMMA INSTITUTE OF TRANSPORT AND MARITIME MANAGEMENT ANTWERP

1

3

### 2. Liu & Shen variant of the **FSMVRPTW**

Universiteit Antwerpen

- Heterogeneous fleet
  - Vehicle cost (acquisition / depreciation), capacity
  - Unlimited number of each type
- · Objective is sum of
  - Vehicle cost
  - "En route time"
  - In reporting, (constant) sum of service time is excluded
- Not a straightforward extension of the VRPTW
- Liu & Shen benchmark
  - derived from the Solomon VRPTW 100 benchmark
  - 3-5 vehicle types (depending on Solomon subclass)
  - 3 different cost structures (depending on type of instance)
  - 168 test instances

Universiteit Antwerpen

#### ITTMMA INSTITUTE OF TRANSPORT AND MARITIME MANAGEMENT ANTWERP

#### 3. Recent papers

- Dell'Amico, Monaci, Pagani, Vigo (2006)
  - L&S, regret-based parallel insertion + Ruin & Recreate
- Calvete, Galé, Oliveros, Sánches-Valverde (2006)
  - hard and soft TW, multiple objectives, goal programming, set partitioning
- Tavakkoli-Moghaddam, Safaei, Gholipour (2006)
  - route cost only dependent on vehicle, time window on depot, nearest neighbor + SA
- Dondo and Cerdá (2006)
  - Multiple depot, clustering heuristics + MILP



4

6

### 4. New benchmarks

Universiteit Antwerpen

- Efficiently Solving large scale FSMVRPTW
  - Previous research limited to 100 customer instances >< problem sizes encountered in practice</li>
  - Problem instances derived from the Gehring and Homberger (1999) problem instances for the VRPTW
  - 200, 400, 600, 800, 1000 customers
  - R, C, RC
- Objective function: minimize
  - Vehicle costs
  - Distance costs (vs. en route time in earlier VRPTW and FSMVRPTW research)

#### ITTMMA INSTITUTE OF TRANSPORT AND MARITIME MANAGEMENT ANTWER

- Privé, Renaud, Boctor, Laporte (2006)
  - soft drink distribution, reverse logistics, route cost and revenue, 3 construction heuristics + improvement
- Bräysy, Dullaert, Hasle, Mester, Gendreau (2007) (TS)
  - Multi-start deterministic annealing metaheuristic
  - 151 new best, 167 best know solutions for L&S 100 customer benchmarks
- Bräysy, O., Porkka, P., Dullaert, W., Repoussis, P.P., and C.D. Tarantilis (2008) (ESWA).
  - New benchmarks based on Gehring and Homberger (1999)
  - Hybrid threshold accepting and Guided Local Search
  - Strategies for limitation and intensification of search

INSTITUTE OF TRANSPORT AND MARITIME MANAGEMENT ANTWERP

5

7

- Vehicle types and cost structure
  - 8 vehicle types for all benchmarks
  - Vehicle types identified in practice (excluding vans)
  - Maximum capacity and costs of VRPTW instance used as a reference
  - 6th largest truck of 6 tons equaled to VRPTW carrying capacity, 2 larger and 5 smaller vehicles
  - Cost structure of vehicles proportional to the 6th vehicle, rounding to 5 => constant returns to scale
- Liu & Shen + new benchmarks = 768 problem instances

Universiteit Antwerpen

| (    | C1       | C2   |          |  | F    |          |   |
|------|----------|------|----------|--|------|----------|---|
| Cost | Capacity | Cost | Capacity |  | Cost | Capacity |   |
| 40   | 200      | 120  | 575      |  | 40   | 140      |   |
| 70   | 335      | 240  | 1100     |  | 70   | 230      |   |
| 100  | 460      | 350  | 1540     |  | 100  | 310      |   |
| 140  | 615      | 470  | 1975     |  | 140  | 405      |   |
| 170  | 715      | 580  | 2320     |  | 170  | 460      |   |
| 200  | 800      | 700  | 2700     |  | 200  | 500      |   |
| 240  | 910      | 820  | 2955     |  | 240  | 550      |   |
| 270  | 975      | 930  | 3160     |  | 270  | 565      |   |
|      |          |      |          |  |      |          | 1 |
|      | R2       |      | C1       |  |      | C2       |   |
| Cost | Capacity | Cost | Capacity |  | Cost | Capacity |   |
| 170  | 590      | 40   | 125      |  | 170  | 590      |   |
| 340  | 1115     | 70   | 205      |  | 340  | 1115     |   |
| 500  | 1550     | 100  | 275      |  | 500  | 1550     |   |
| 670  | 1945     | 140  | 355      |  | 670  | 1945     |   |
| 840  | 2270     | 170  | 420      |  | 840  | 2270     |   |
| 1000 | 2500     | 200  | 450      |  | 1000 | 2500     |   |
| 1170 | 2690     | 240  | 495      |  | 1170 | 2690     |   |
| 1330 | 2795     | 270  | 500      |  | 1330 | 2795     |   |



- 3 phases, embedded in restart loop
- Phase 1: Construct a single initial solution
- Phase 2: Route elimination
- Phase 3: Iterative improvement
  - 4 local search operators
  - Variable Neighborhood Descent until local optimum
  - Threshold Accepting until iteration limit, or no improvement limit
- First accept

9

Adaptive memory of good and rarely selected arcs

ASTITUTE OF TRANSPORT AND

#### Phase 1: generation of the initial solution

Universiteit Antwerpen

- Based on Savings (Clarke & Wright 1964)
- · Savings based on total cost
- Each route initialized with smallest possible vehicle type
- Greedy upgrade of vehicle type when needed
- New:

8

- Only a single initial solution is created
- only 7 closest routes (based on their geographical average coordinate) are considered in fixed order
- Merging routes based on the best insertion points instead of a probabilistic insertion in one of the 3 best improving points
- When merging route R1 into R2, only c customers from R2 that are closest to endpoints of R1 are considered

NSTITUTE OF TRANSPORT AND MARITIME MANAGEMENT ANTWERP

Phase 2: route elimination

Universiteit Antwerpen

approach

- · Based on simple insertions, procedure ELIM
- Routes considered for depletion, in random order
- NEW: Only 5 (quick)-10 (regular) closest routes are considered for re-insertion instead of all remaining routes
- NEW: instead of trying customers tried in decreasing order of criticality, customers are now inserted in random order
- Best feasible insertion point w.r.t. total cost
- Cutoff when insertion cost exceeds elimination savings
- ELIM is run until guiescence

10



#### Phase 3: iterative improvement

Universiteit Antwerpen

- 4 local search operators iterated, First Accept,
- NEW: search limited to
  - 5 (quick)-10 (regular) closest routes are considered
  - Of which 25 closest pairs of customers that match the time window in each move are considered
- ICROSS

12

- Cross-exchange with reversal of segments
- Heterogeneous fleet
- Limited segment length
- IOPT: Or-opt extended with segment reversal (every second iteration)
- ELIM: As in Phase 2 (every second iteration), but considering 5 to 10 closest routes in random order
- SPLIT: All possible splits (every third iteration)
- **NEW:** special intensification step (randomly about every 30th iteration without improvement)

#### ITMMA INSTITUTE OF TRANSPORT AND MADITINE MANAGEMENT ANTWEED

- normal:
  - ICROSS/IOPT with a maximum segment length of 3
  - Threshold > 0:
    - Randomly select 3 routes
    - · ICROSS is limited to their 5-10 closest routes each
    - Further limited to the 25 pairs of customers that match the time windows considered
  - Threshold = 0:
    - ICROSS for all routes
    - Limited to their 5 to 10 closest routes each
    - · Applied to all pairs of customers on those routes
  - IOPT always applied to all routes
- Intensification: after the random (around every 30<sup>th</sup>) iteration without improvement
  - ICROSS/IOPT with maximum route segment of 5

13

15

ITMMA INSTITUTE OF TRANSPORT AND MARITIME MANAGEMENT ANTWERP

- Route sequence shuffled before each iteration
- Iterate until local optimum, or no improvement over given # iterations (1000 or 4000)
- Threshold Accepting on all moves except SPLIT
- Threshold first to 0, after 1<sup>st</sup> local optimum set to max and reduced for each non improving move (-0.009), then reinitialized to r \* T\_max (0.06)
- threshold is set to zero immediately when a new best-known solution is found
- NEW:
  - GLS to penalize long arcs and favours rarely selected short arcs by updating the distance matrix used in the objective function calculation at each restart.
  - GLS utilities and penalties to zero after every 65 iterations
  - GLS not used during the last 1000 iterations

ITTM MA INSTITUTE OF TRANSPORT AND MARTITIME MANAGEMENT ANTWERP

#### 6. New solution approach

- 3 phases, embedded in restart loop
- Phase 1: Construct a single initial solution (identical)
- Phase 2: Route elimination (identical)
- Phase 3: Iterative improvement
  - 4 local search operators
  - tabu search to monitor diversification
  - adaptive maximum thresholds to monitor solution quality
  - chain-like restart procedure

Universiteit Antwerpen

14



# Phase 3: iterative improvement

- Route sequence shuffled before each iteration
- 4 local search operators: ICROSS, IOPT, ELIM, SPLIT
- ICROSS

16

18

- Cross-exchange with reversal of segments
- Heterogeneous fleet
- Limited segment length (3, increased to 5 when new best solution found)
- Limited to closest pairs of customers on route-basis (min = 3, max=100)
- IOPT: Or-opt extended with segment reversal (every second iteration) (segment length 3/5, closest customers =55)
- ELIM: As in Phase 2 (every second iteration),
- SPLIT: All possible splits (every third iteration)

Universiteit Antwerpen

### ITMMA

### Setting closeness limits

INSTITUTE OF TRANSPORT AND MARITIME MANAGEMENT ANTWERP

- Limiting the search in phase 3: parameter setting on a routebasis at the start of the search:
- Close routes determined based on the average coordinates of the customers in the routes
- Within min-max limits identify for which number routes improvements can be found, first-accept
- Limited ICROSS: closest customer pairs for which improvements can be found, without checking feasibility min = 3, max = 100.
- Updating after successful SPLIT move:
  - Limited ICROSS to determine c
  - Actual ICROSS, first accept, up to max of 10-15 routes
    - Do improving moves, first accept
    - Store how many close routes we should consider for the new routes created by the SPLIT operator

17

ITMMA INSTITUTE OF TRANSPORT AND MARITIME MANAGEMENT ANTWERP

- · Diversification strategy instead of first-accept
  - store all feasible and improving moves
  - Select improving and feasible move for which the arc frequencies of all related arcs is the lowest
- Tabu Search to monitor diversification
  - improving moves and the arc from the predecessor to the first node of the route segment
  - after each move, associated node value = current iteration + 40 (tabu tenure).
  - Currently no aspiration criteria

#### TMMA INSTITUTE OF TRANSPORT AND MARITIME MANAGEMENT ANTWERP

- · Threshold Accepting to monitor solution quality
  - Initial Maximum threshold is set randomly between 0.03 and 0.08 and reduced for each non improving move (random 0.005-0.010),
  - Subsequent maximum thresholds are divided by iteration number(mod 10)+1, after 10 runs the threshold is reset to its initial level
  - Threshold Accepting on all moves except SPLIT
  - If total worsening since last restart or last best move exceeds certain percentage (randomly between 2 and 10%) of the current best solution, threshold is immediately set to 0

Universiteit Antwerpen



- If no improvement were found for n=10 or 40 iterations (with 50% prob.)
  - Restart from the current best solution
  - Resuffle routes
  - Use 'chain mode' which as soon as an improving move of route A with its close route B is found, selects B as the new base route and considers its closest routes (rather than processing routes in the sequence obtained after reshuffling)
  - Increase maximum allowed worsening to 3-15% to allow larger changes
  - Chain mode is switched off when a new best solution is found





#### Configurations

- Very quick: 500 iterations, 3-10 closest routes (p)
- Quick: 1000 iterations, 3-10 closest routes (p)
- Medium: 2000 iterations, 3-15 closest routes (p)
- Normal: 4000 iterations, 3-15 closest routes (p)



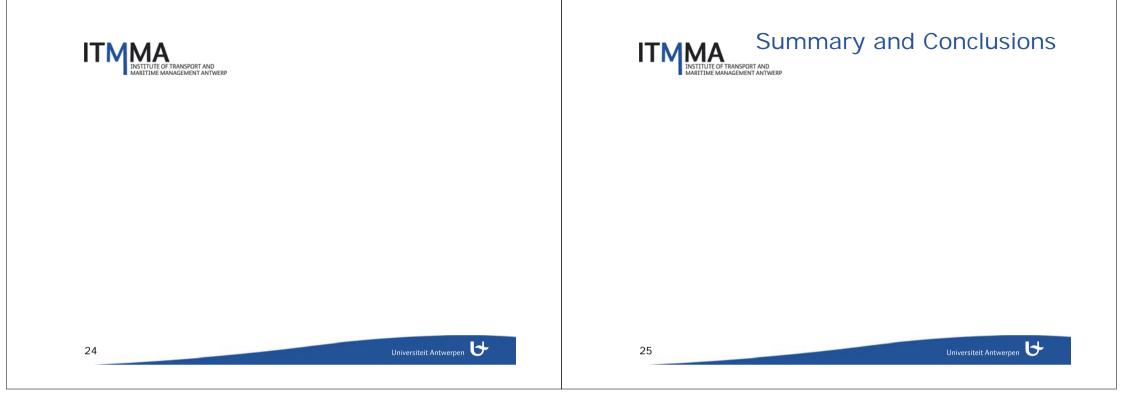
21

23

### 7. Computational testing

JTE OF TRANSPORT AND ME MANAGEMENT ANTWERD

- Intel Core Duo T7700 (2.4 GHz) processor and 2 GB memory computer.
- For the L&H benchmarks: minimize total cost =
  - total fixed cost of the vehicles used
  - total distance
- For the G&H benchmarks: minimize total cost =
  - total fixed cost of the vehicles used
  - total distance


Universiteit Antwerpen

|         | MAKITIME MANAGEMENT ANTWERP |      |         |         |         |         |        |  |  |  |  |
|---------|-----------------------------|------|---------|---------|---------|---------|--------|--|--|--|--|
|         |                             |      |         |         |         |         | Norma  |  |  |  |  |
| ata set | Size                        | Cost | Normal  | Quick   | MSDAL   | MSDA    | Quick  |  |  |  |  |
|         | 100                         | Α    | 7085.91 | 7090.23 | 7087.20 | 7141.15 | -0.06% |  |  |  |  |
| 2       | 100                         | Α    | 5689.40 | 5688.60 | 5719.98 | 5797.38 | 0.01%  |  |  |  |  |
| l       | 100                         | А    | 4060.96 | 4080.65 | 4074.73 | 4131.31 | -0.48% |  |  |  |  |
| 2       | 100                         | А    | 3180 58 | 3205 98 | 3194 50 | 3310.70 | -0 79% |  |  |  |  |

| Results | ESWA | paper |
|---------|------|-------|
|---------|------|-------|

Universiteit Antwerpen 😽

|                     |      |       |         |         |         |         | Normal | Normal | Normal | Quick-  | Quick- | MSDA   |
|---------------------|------|-------|---------|---------|---------|---------|--------|--------|--------|---------|--------|--------|
| Data set            | Size | Cost  | Normal  | Quick   | MSDAL   | MSDA    | Quick  | MSDA   | MSDA   | MSDA    | MSDA   | MSDA   |
| C1                  | 100  | Α     | 7085.91 | 7090.23 | 7087.20 | 7141.15 | -0.06% | -0.02% | -0.77% | 0.04%   | -0.71% | 0.76%  |
| C2                  | 100  | Α     | 5689.40 | 5688.60 | 5719.98 | 5797.38 | 0.01%  | -0.53% | -1.86% | -0.55%  | -1.88% | 1.35%  |
| R1                  | 100  | Α     | 4060.96 | 4080.65 | 4074.73 | 4131.31 | -0.48% | -0.34% | -1.70% | 0.15%   | -1.23% | 1.39%  |
| R2                  | 100  | Α     | 3180.58 | 3205.98 | 3194.50 | 3310.70 | -0.79% | -0.44% | -3.93% | 0.36%   | -3.16% | 3.64%  |
| RC1                 | 100  | Α     | 4935.52 | 4975.33 | 4958.93 | 4948.53 | -0.80% | -0.47% | -0.26% | 0.33%   | 0.54%  | -0.21% |
| RC2                 | 100  | Α     | 4231.25 | 4233.13 | 4241.72 | 4399.12 | -0.04% | -0.25% | -3.82% | -0.20%  | -3.77% | 3.71%  |
| C1                  | 100  | С     | 1615.40 | 1617.97 | 1616.99 | 1622.03 | -0.16% | -0.10% | -0.41% | 0.06%   | -0.25% | 0.31%  |
| C2                  | 100  | С     | 1185.69 | 1187.23 | 1186.33 | 1223.86 | -0.13% | -0.05% | -3.12% | 0.08%   | -2.99% | 3.16%  |
| R1                  | 100  | С     | 1539.90 | 1559.07 | 1538.90 | 1579.17 | -1.23% | 0.06%  | -2.49% | 1.31%   | -1.27% | 2.62%  |
| R2                  | 100  | С     | 1149.06 | 1168.47 | 1158.71 | 1257.65 | -1.66% | -0.83% | -8.63% | 0.84%   | -7.09% | 8.54%  |
| RC1                 | 100  | С     | 1749.66 | 1790.99 | 1749.37 | 1758.29 | -2.31% | 0.02%  | -0.49% | 2.38%   | 1.86%  | 0.51%  |
| RC2                 | 100  | С     | 1372.82 | 1391.67 | 1381.71 | 1566.01 | -1.35% | -0.64% | 12.34% | 0.72% · | 11.13% | 13.34% |
| Average             |      |       | 3149.68 | 3165.78 | 3159.09 | 3227.93 | -0.75% | -0.30% | -3.32% | 0.46%   | -2.59% | 3.26%  |
| % above minimum     |      | 0.01% | 0.77%   | 0.31%   | 3.59%   |         |        |        |        |         |        |        |
| Runs                |      | 5     | 5       | 3       | 3       |         |        |        |        |         |        |        |
| Average CPU seconds |      | 3.30  | 0.35    | 24.87   | 50.03   |         |        |        |        |         |        |        |
| per instance        | e    |       |         |         |         |         |        |        |        |         |        |        |

