The LNG Inventory Routing Problem with Pick-Up Contracts

Henrik Andersson Marielle Christiansen Roar Grønhaug

Agenda

- The Liquefied Natural Gas Supply Chain
- Problem characteristics
 - Regasification terminals
 - Ship movements
 - Liquefaction plants
 - Contracts
- Model summary
- Solution approach

The LNG Supply Chain

- Exploitation & Production
 - Liquefaction / Storage
 - Shipping
 - Regasification / Storage
 - End users

The LNG Supply Chain

- Exploitation & Production
 - Liquefaction / Storage
 - Shipping
 - Regasification / Storage
 - End users

Problem characteristics

- Liquefaction plants
 - Contracts
 - Port availability

- Regasification terminals
 - Inventories
 - Sales
 - Port availability
- Ship movements
 - Paths
 - Boil-off

Regasification terminals

- Assuming full control at the regasification terminals
 - I_L ≤ Inventory ≤ I_U
 - S_L ≤ Sales ≤ S_U
 - Inventory balance
 - Berth constraints

Ship movements

Information about the ship movements is contained in paths consisting of:

- Geographical route
 - Visits and sequence
- Schedule
 - Times for loading and unloading
- Quantity
 - Loaded and unloaded

Ship movements; Network

 The ship movements can be represented in a time-space network

- Each path in the network corresponds to at least one set of (route, schedule, quantities)

Ship movements; Quantities

Boil-off

- Can be used as fuel for the ship

$$Q_1 + Q_2 = Q_v \cdot (1-B) \cdot (7-1)$$
 $Q_3 = Q_v \cdot (1-B) \cdot (10-7)$

Liquefaction plants

- One of many actors at the liquefaction plants
- Contracts instead of inventories
- Berth constraints
- Inter-arrival gaps

Contract characteristics

 Upper and lower limits on quantities

Start date and end date

 Partitions to regulate the quantity loaded

Contract characteristics

- Connected to one liquefaction plant
- Designated regasification terminals
- Destination restrictions

$$Q_1 + Q_2 \ge W(Q_1 + Q_2 + Q_3 + Q_4)$$

Contract characteristics

- Destination and time dependent prices
 - Contract
 - Quantity loaded
 - Unloading time
 - Destination

Cost:

Revenue:

Loading and unloading

- Due to boil-off, we do not use quantities to connect the loading and unloading
- Instead we use shares

Share loaded at P_1 : 1 Share unloaded at D_1 : 2/3 Share unloaded at D_2 : 1/3

Loading and unloading; Contracts

Assume 2 contracts, both connected to P1

a^{CP}_{ct}	The share used for contact \emph{c} when loading in time period \emph{t}
a ^{CD} _{ict}	The share used for contact \emph{c} when unloading at regasification terminal \emph{i} in time period \emph{t}

Share loaded at P_1 : 1 Share unloaded at D_1 : 2/3 Share unloaded at D_2 : 1/3

$$a^{CP}_{13} + a^{CP}_{23} = 1$$

$$a^{CD}_{D1,710} + a^{CD}_{D1,210} = 2/3$$

$$a^{CD}_{D2,114} + a^{CD}_{D2,214} = 1/3$$

Connecting loading and unloading

$$\sum_{\tau=T_c^S}^t \left(a_{c\tau}^{CP} - \sum_{i \in N^D} a_{ic\tau}^{CD} \right) \ge 0, \quad c \in C, t \in T$$

$$a^{CP}_{13} + a^{CP}_{23} = 1$$

$$a^{CD}_{D1,710} + a^{CD}_{D1,210} = 2/3$$

$$a^{CD}_{D2114} + a^{CD}_{D2214} = 1/3$$

Model summary; Constraints

Regasification terminals

- Inventory balance constraints
- Limits on inventory levels and sales
- Berth constraints

Ship movement

- Convexity constraints
- Implicit feasibility through the path information

Liquefaction plants

- Berth constraints
- Inter-arrival gaps

Contracts

- Limits on quantity loaded on each contract
- Destination restrictions

General

- Connection constraints
 - Contracts
 - Loading
 - Unloading
 - Path information

Model summary; Objective

Maximize

Revenue from selling gas

- Cost of purchasing gas
- Ship operating costs

Solution approach; Branch-and-price

- Branch-and-price
 - Solve the model with a restricted number of paths using branch-and-bound
 - Each node in the branch-and-bound tree is solved using column generation

Solution approach

- Master problem
 - All of the above constraints
 - Implicit path feasibility

- Subproblem
 - Explicit path feasibility
 - Boil-off and quantity calculations

Summary

- An important part of the LNG supply chain has been modeled
- Pick-up contracts with destination restrictions
- Path-based model
 - Separates path assignment and path feasibility
- Branch-and-price
 - Works well for similar problems

Questions

