CO₂ capture from IGCC by lowtemperature syngas separation and partial condensation of CO₂

TCCS-6 Conference, June 15th 2011, Trondheim David Berstad, Petter Nekså, Rahul Anantharaman david.berstad@sintef.no SINTEF Energy Research

Presentation outline

- Brief introduction to the DECARBit project
- Vapour-liquid equilibria in H₂–CO₂ systems
 - > Gives the expected CO_2 capture ratio for phase separation
- Principal process-level design for low-temperature syngas separation and CO₂ capture
- Main results from process simulations
- Conclusions

The DECARBit project (2008–2011)

- Assess and research new techniques for pre-combustion CO₂ capture
- Develop advanced oxygen production techniques
- Continue the development efforts in FP6 projects in the precombustion area for key enabling technologies
- Underpin the cost reduction objective
- Establish collaborative schemes with emerging large-scale CCS initiatives in Europe
- Perform an assessment of the advanced pre-combustion capture techniques to the benefit of other energy intensive industries

The DECARBit project (2008–2011)

The DECARBit project (2008–2011)

	Unit	Syngas after H ₂ S removal, sweet shift and H ₂ O removal	
Temperature	°C	30	
Pressure	bar	35.0	
Flowrate	kg/s	114	
Composition	mol-%		
H ₂		54.14	
СО		1.73	
CO ₂		38.39	
N ₂		4.79	
Ar		0.94	
H ₂ O		ppm levels	
H ₂ S		ppm levels	
Other		0.02	

H₂–CO₂ vapour-liquid equilibria

Spano J, Heck C, Barrick P. Liquid-vapor equilibria of the hydrogen–carbon dioxide system. J. Chem. Eng. Data. 13(2), 169–171 (1968). Tsang C, Streett W. Phase equilibria in the H_2/CO_2 system at temperatures from 220 to 290 K and pressures to 172 MPa, Chem. Eng. Sci. 36, 993–1000 (1981).

Vapour-liquid equilibria

SEVENTH FRAME

CO-FUNDED BY

SEVENTH FRAMEWOR

Main results

Main results

Power consumption decomposed

Main results

Simulation parameters

Isentropic efficiency		
Syngas compressor		82
Propane compressor		82
Ethane compressor		82
Recycle compressor		80
Power recovery fuel expander		85
Liquid CO ₂ pump		80
Pressure drop		
Heat exchangers		0.2
Inter- and after-coolers		0.5
Temperature approach		
Heat exchanger pinch		3
LMTD in propane-ethane cascade heat exchanger		> 5

Concluding remarks

- A conceptual low-temperature syngas separation process for CO₂ capture from IGCC has been developed and simulated
- 85% capture ratio is achievable for shifted syngas with a CO₂ concentration of 38 mol-%. Specific capture work for the considered system boundaries is around 330 kJ per kg CO₂ captured
- Partial capture is possible without the need of pre-compression
- Refrigeration cycles account for a significant part of the power consumption and must be optimised
- Simulation of the overall IGCC with CO₂ capture is required in order to obtain a justified benchmarking with baseline technologies
 - Syngas conditioning (water removal and desulphurisation) must be included
- Overall performance analysis and techno-economic assessment, equipment sizing and costing will be carried out in the last phase of DECARBit

Acknowledgements

Funding industry partners

The research leading to these results has received funding from the European Union's Seventh Framework Program (FP7/2007–2011) under grant agreement number 211971 (the DECARBit project).

