

LINKÖPING UNIVERSITY

Outline Forest supply chain – wood flow Supply chain modules Transportation and harvesting Integrated logistics Supply chain planning Process control Summary

Forest supply chain – wood flow

Industry participants

- Forest companies and associations,
 - owning forests and pulp/paper/saw mills.
- Independent sawmills, without any large forests
- Independent forest owners not connected with any mills
- Loggers and transporters

Often decentralised management

Planning modules (supply chain matrix)

	Forest management	Transportation and routing	Production
Strategic > 5 years	Planting, Valuation, Long term harvesting	Road building, Fleet management, Trains?, Terminals?	Investment planning
Tactical 1/2 – 5 years	Annual harvest plans	Road upgrade, Equipment, Train scheduling	Annual production planning
Operational 1 - 180 days	Crew scheduling, Harvest sequencing	Catchment areas, Back-hauling, scheduling	Lot sizing, Scheduling
Online < 1 day	Bucking	Truck dispatching	Process control, Roll cutting, Cross-cutting

Current development

- Companies follow each other in terms of development
- Development of integrated support system for the entire chain but with different modules
- Modules are often based on manual interference but OR techniques is making advances

Transportation and harvesting modules

Some facts

- The forest industry represents a major part (25%) of the demand for transportation of goods in Sweden
- The cost of transportation represent one third of the total cost of raw material, round wood, to the forest industry.

Multicommodity transportation problem

 x_{ijk} = flow from supply point i to demand point j with assortment k

Mathematical model – transportation problem

$$\min \sum_{i \in I} \sum_{j \in J} c_{ijk} x_{ijk}$$

$$\sum_{i \in J} x_{ijk} \le s_{ik}, \quad \forall \quad i \in I, k \in K \quad \text{(supply)}$$

$$\sum_{i \in I} x_{ijk} = d_{jk}, \quad \forall \quad j \in J, k \in K \quad \text{(demand)}$$

$$x_{ijk} \ge 0, \ \forall \ i \in I, j \in J, k \in K$$

Mathematical model

- backhaulage problem

$$\min \sum_{i \in I} \sum_{j \in J} \sum_{k \in K} c_{ijk} x_{ijk} + \sum_{l \in L} d_l y_l$$

$$\sum_{i \in J} x_{ijk} + \sum_{l \in L} a_{ikl} y_l \le s_{ik}, \quad \forall \quad i, k \quad \text{(supply at harvest areas)}$$

$$\sum_{i \in I} x_{ijk} + \sum_{l \in L} b_{jkl} y_l = d_{jk}, \quad \forall \quad j,k \quad \text{(demand at industries)}$$

$$x_{ijk},y_l\geq 0,\ \forall\ i\in I,j\in J,k\in K,l\in L$$

Case study "Transportsamordning Nord"

Results

- backhaulage, 46 % of volumes
- Empty driving 24 %
- Time 9 %
- Fuel 7 %

Åkarweb – current usage

- Online information system
 - Continuous updates of supplies, demands...
 - Total of 180 trucks connected
- **Experiences**:
 - Less administration
 - 15% less empty driving
 - 6-7% cost savings

Integrated logistics - FlowOpt

Supply chain planning modules

	Forest management and harvesting	Transportation and routing	Production
Strategic planning > 5 years	Planting, Evaluation, long term harvesting	Road building, road upgrading, fleet management, train, terminals	Investment planning
Tactical planning 6 months – 5 years	Annual harvest plans	Road upgrade, Equipment and fleet utilization, train schedules	Annual production planning
Operative planning 1 day – 6 months	Crew scheduling, Harvest sequencing	Catchment areas, back- haulage planning, scheduling	Lot sizing, scheduling
Online planning < 1 day	Bucking	Truck dispatching	Process control, Roll cutting, Cross-cutting

Route selection with road database

- Length
- Road class
- Speed limit
- Surface
- Road width
- Owner

Recent case

- 140 supplies
- 1500 piles
- 52 industries
- 220 demands
- 10 terminals
- 5 train routes
- 12 assortments
- 8 assortment groups
- 5 scenarios

Optimization

- Approx. 100,000 variables (flow)
- Approx. 3,000 constraints
- Approx. 30 million backhaulage tours
- Solution time:
 - (no backhaulage): < 10 seconds
 - (backhaulage): up to 1 hour
- Results
 - Overall saving using train & trucks: 5-10%
 - Addional saving using backhaulage tours: 2-5%

Case studies with FlowOpt

- Co-operation between companies to coordinate transportation
- Co-ordinate between companies to swap pulp-logs
- Integrate harvesting, sorting and paper production
- Terminal location

The Södra Group Södra Skog Purchasing and trading 12,5 million cubic meters Five regions, 51 districts Five regions, 51 districts Södra Cell Processing wood into pulp Five mills Producing 2 million tons Processing 9 million cubic meters Södra Timber Processing logs into sawn timber Six mills Producing 1 million cubic meters Processing 2 million cubic meters

To the mills

From the mills

Daily variation due to batch (campaign) production: **Assortment pine**

$$l_{ia,t-1}^F + H_{iat} - \sum_{i \in \mathcal{M}} x_{ijat} = l_{iat}^F \quad \forall i, a, t$$

$$l_{jp,t-1}^H + w_{jpt} - v_{jpt} = l_{jpt}^H \quad \forall j, p, t$$

$$\sum_{a \in A} f_{ja} \le T_j^M \quad \forall j$$

$$0.9f_{ja} \ge \sum_{i \in F} x_{ijat} \le 1.1f_{ja} \quad \forall j, a, t$$

$$\sum_{i \in M} \sum_{a \in A} x_{ijat} \le T_i^D \quad \forall i, t$$

$$\sum_{i \in M} y_{jdpt} = D_{dpt}^{D} \quad \forall d, p, t$$

$$\sum_{i \in M} v_{jpt} = D_{pt}^{E} \quad \forall p, t$$

- No systems from SAP, i2,...

 $l_{ia,t-1}^F + H_{iat} - \sum_{j \in M} x_{ijat} = l_{iat}^F \quad \forall i, a, t \\ l_{jp,t-1}^H + W_{jpt} - V_{jpt} = l_{jpt}^H \quad \forall j, p, t \\ \sum_{a \in A} f_{ja} \leq T_j^M \quad \forall j \\ 0.9 f_{ja} \geq \sum_{i \in F} x_{ijat} \leq 1.1 f_{ja} \quad \forall j, a, t \\ \sum_{j \in M} \sum_{a \in A} x_{ijat} \leq T_i^D \quad \forall i, t \\ \sum_{j \in M} y_{jdpt} = D_{dpt}^D \quad \forall d, p, t \\ \sum_{j \in M} v_{jpt} = D_{pt}^E \quad \forall p, t$ ■ No systems from SAP, i2, ...

− PC based system

■ Daily time discretisation

Minimize total supply chain cost

■ Production variables: z

− Column generation of 3-month plans

Flow and storage variables

− Inflow, storage, transportation

■ Constraints

− Flow conservation, capacities, demand

■ Branch and price & constraint branching

■ Initial tests gave 7 days solution time

■ Aggregation of time periods

$$l_{ja,t-1}^{A} + \sum_{i \in F} x_{ijat} - \sum_{q \in \mathcal{Q}_{j}} \sum_{r \in \mathcal{R}_{j}} R_{jra}^{in} \delta_{jqrt} z_{jq} - l_{jat}^{A} = 0 \quad \forall j, a, t$$

$$l_{jp,t-1}^P + \sum_{q \in \mathcal{Q}_j} \sum_{r \in R_j} R_{jrp}^{out} \delta_{jqrt} z_{jq} - w_{jpt} - \sum_{d \in D} y_{jdpt} - l_{jpt}^P = 0 \quad \forall j, p, t$$

$$\sum_{j} z_{jq} = 1 \quad \forall j$$

Solution method - column generation

Each campaign has a minimum and maximum duration

There is a fixed cost to switch products

Solution balances transportation and setup costs

Test case

- 3 Swedish pulp mills
- Comparison with manual plan (Jan-April 2001)
- 10 forest districts producing 4 log types
- 15 products (specific recipes per pulp mill)
- 90 days planning giving 55 time periods
- Model A:
 - Master: 9,500 constraints; 31,800 variables+1,500 generated
 - Sub: Production Plan Generator:
 - 300,000 arcs (full subproblem)
 - 5,500 arcs (lower bounds on campaign length)
- Model B:
 - Master: 14,000 constraints; 35,000 variables

Production plans

- Comparison with manual plans
- Strategic implications regarding campaign scheduling
- Challenges:
 - model more parts of the supply chain

Summary and future challenges

- Forest companies are developing supply chain modules
- Increasing usage of OR techniques in planning system
- Savings are typically in the order of 5-10%
- Important that OR skilled/educated persons are a part of the development
- Data collection can be hard and faulty data is a potential problem
- Specialized models and methods required
 - Quick and robust solution methods