

Evaluation of downlink IEEE802.16e communication at airports

Jan Erik Håkegård, Tor Andre Myrvoll

{jan.e.hakegard, tor.andre.myrvoll}@sintef.no

ICT

I-CNS 2008, Bethesda, MD, USA, May 7 2008

Outline

Background

- Why airport communication at 5 GHz
- Mobile WiMAX (OFDMA)
- SECOMAS project

Impact of channel parameters on system performance

- Path loss
- Fading amplitude statistics
- Multipath delay spread
- Doppler spread
- Spatial correlations

Conclusions

C-band

Airport communications

Recommendation from SESAR and NextGen: Develop an aeronautical Mobile WiMAX profile

Procedure:

- 1. Identify how aeronautical utilization of the technology differentiates from other utilizations
 - Frequencies/bandwidths/channelization
 - Propagation conditions (environment)
 - Services (ATS, AOC, APS, others)
- 2. Identify the portions of the IEEE 802.16e (and future IEEE 802.16m?) standard and parameter settings that are best suited

ICT

- 3. Identify and develop missing required functionalities if any
- 4. Evaluate and validate the performance through trials and test bed development
- 5. Propose an aviation specific standard

I-CNS 2008, Bethesda, MD, USA, May 7 2008

IEEE802.16e (Mobile WiMAX)

Technically advanced standard

Includes state-of-the-art communication techniques and signal processing

- Key properties:
 - OFDMA
 - Scalability (1.25 20 MHz bandwidth)
 - Adaptive coding and modulation
 - Flexibility in range and throughput
 - MIMO
 - Space time coding
 - Diversity gain
 - Spatial multiplexing
 - Increased capacity

OFDMA Frame Structure

SECOMAS project

- Nationally funded R&D project running from 2007 to 2010
- Cooperation between:
 - SINTEF
 - NTNU (University of Trondheim)
- Two paths:
 - Industrial
 - Airport communications
 - Aeronautical satellite communications in northern latitudes
 - Theoretical
 - OFDM + (distributed) MIMO with limited feedback/inaccurate channel estimations in an aeronautical setting

SECOMAS project Airport communications

Developed a simulator of mobile WiMAX for airport communications including

- OFDMA physical layer
- DL-PUSC communications
- Flexible FFT size
- All mandatory coding and modulation schemes
- Adaptive antenna systems
 - 2x1 and 2x2 Space Time Coding (STC)
 - 2x2 Spatial Multiplexing (SM)
- Airport environment channel models (Weibull, Rayleigh)

Goals

- Assess performance (range, capacity) based on BER simulations
- Gain more insight into mechanisms determining system performance
- Identify suitable portions of the standard for airport communications

I-CNS 2008, Bethesda, MD, USA, May 7 2008

Propagation channel modeling

Channel models capture typical channel characteristics for specific communication technologies in specific types of environments

Depend on

Transmit signal (carrier frequency, bandwidth, antenna systems,..)

ICT

- Propagation environment (urban, sub-urban, rural, airport,...)
- Mobility of transmitter and receiver

Design of new communication systems requires assessment and possibly development of new channel models

Channel models for airport environment

- 5 GHz band: "Ohio University report¹"
- Three types of airports
 - Large
 - Medium
 - Small (General aviation)
- Three propagation regions within airports
 - Near gate (NLOS)
 - Near terminal buildings (NLOS-S)
 - Runways (LOS)

¹ Matolak, David W., May 2006, Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas, Ohio University.

Path loss Important for network planning

Fading amplitude statistics

Multipath delay spread

Doppler spread

Spatial correlations

n: exponential loss factor

- n = 2: free space loss
- n ~ 3-4: urban areas

Path loss

- Fading amplitude statistics Important for ACM
- Multipath delay spread
- Doppler spread
- Spatial correlations

🕥 SINTEF

I-CNS 2008, Bethesda, MD, USA, May 7 2008

Fading amplitude statistics

NLOS

- "Worse than Rayleigh"
 - Weibull b={1.6, 1.8}
- Lower b-value leads to deteriorated BER performance
- Different optimal thresholds for ACM compared to Rayleigh channel
- NLOS-S/LOS
 - Better BER performance than Rayleigh channel

Path loss

- Fading amplitude statistics
- Multipath delay spread Important for size of FFT and cyclic prefix Important for channel estimation
- Doppler spread
- Spatial correlations

Multipath delay spread Airport

Delay spread large airport

- **Typically** $\tau \approx 1 \ \mu s$
- Worst case significantly longer

Coherence bandwidth

- Related to delay spread
 - B_c~1/ τ ~ 1 MHz
- Narrowband communication

■ B<< B_c

Frequency selective communications

■ B>> B_c

Size of FFT vs. multipath delay spread

- OFDMA PHY of IEEE802.16e standard:
 - $1.25 \text{ MHz} \le B \le 20 \text{ MHz}$
- 1.25 MHz WiMAX channel: frequency dispersive fading
- 20 MHz WiMAX channel: very frequency dispersive fading
- Larger bandwidths potentially increase frequency diversity gain in NLOS environments

Sub-carrier allocation providing frequency diversity gain

Size of cyclic prefix (CP) vs. multipath delay spread

- T_{OFDM-symb} =91.4 μs (without CP)
- **No ISI:** $T_{CP} > \tau_{channel}$
- CP lengths as function of OFDMA symbol length:
 - 1/4: 22.8 μs
 - 1/8: 11.4 μs
 - 1/16: 5.7 μs
 - 1/32: 2.8 μs

Size of cyclic prefix (CP) vs. multipath delay spread

- T_{OFDM-symb} =91.4 μs (without CP)
- **No ISI:** $T_{CP} > \tau_{channel}$
- CP lengths as function of OFDMA symbol length:
 - 1/4: 22.8 μs
 1/8: 11.4 μs
 Best suited

- 1/16: 5.7 μs
- 1/32: 2.8 μs

Channel estimation

- Using pilot symbols
- Interpolating between pilots
- Estimation error depends on:
 - Frequency selectivity (multipath delay spread)
 - Time variation (Doppler spread)

Channel estimation vs. frequency selectivity

DL-PUSC

- Sub-carriers spacing: 10.94 kHz
- Clusters formed by 14 sub-carriers
- Bandwidth of cluster:153 kHz
- Coherence bandwidth (NLOS): 1 MHz

Channel estimation vs. frequency selectivity

DL-PUSC

- Sub-carriers spacing: 10.94 kHz
- Clusters formed by 14 sub-carriers
- Bandwidth of cluster:153 kHz
- Coherence bandwidth (NLOS): 1 MHz

Path loss

Fading amplitude statistics

Multipath delay spread

- Doppler spread Important for channel estimation
- Spatial correlations

Channel estimation vs. time variations

DL-PUSC

- Length of OFDMA symbol: ~100 μs
- Near gate: $v \le 5.5 \text{ m/s} \rightarrow f_d \le 93 \text{ Hz}$
 - Normalized Doppler spread: $93 \cdot 100 \ \mu s = 0.93 \ \% \rightarrow slow fading$
- Every second OFDMA symbol contain pilot symbols

Channel estimation vs. time variations

DL-PUSC

- Length of OFDMA symbol: ~100 μs
- Near gate: $v \le 5.5 \text{ m/s} \rightarrow f_d \le 93 \text{ Hz}$
 - Normalized Doppler spread: 93·100 μ s=0.93 % \rightarrow slow fading
- Every second OFDMA symbol contain pilot symbols

Propagation channel characteristics

- Path loss
- Fading amplitude statistics
- Multipath delay spread
- Doppler spread
- Spatial correlations

Important for MIMO techniques

MIMO techniques

2x2 Space time coding (STC)

- "Matrix A"
- Diversity gain: factor 4
- Coding rate 1
- 2x2 Spatial Multiplexing (SM)
 - "Matrix B"
 - Diversity gain: factor 2 (ML decoding)
 - Coding rate 2
- Diversity/multiplexing gain depends on correlation between channel matrix elements
 - Complete correlation: no gain
 - Complete decorrelation: maximum gain

MIMO techniques Diversity gain

- Assuming complete decorrelation
 - NLOS conditions
 - Sufficiently large antenna spacing
 - d> $\lambda/2$ ~ 3 cm at 5.1 GHz

MIMO techniques Comparison STC/SM

2x2 STC, Mode 3 2x2 SM Mode 1

2x2 STC Mode 6

2x2 SM Mode 3

35

40

30

25

- SM more sensitive to channel estimation errors
 - More severe error floor

Conclusions

- Developing a mobile WiMAX profile for airport communications requires significant work
 - Analysis, simulations and trials
 - Mobile WiMAX simulator for airport communications in 5 GHz band developed
- General considerations
 - Worse than Rayleigh channel conditions in NLOS regions may lead to less than expected range
 - Severe fading may be combated by
 - A wide channel bandwidth through frequency diversity gain
 - MIMO through spatial diversity gain
 - Mobility in NLOS regions degrades performance due to channel estimation errors
 - Time variations more critical than frequency selectivity
 - IEEE802.16m WG considers channel estimation schemes for high mobility (v=100 m/s)

