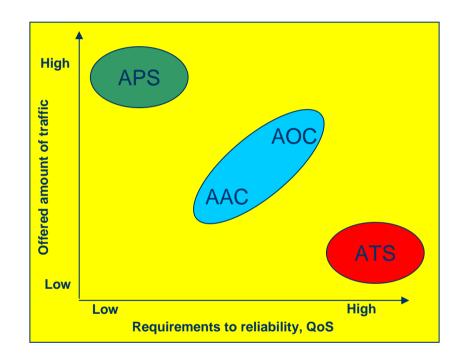


Spectral Efficient COMmunications for future Aeronautical Services

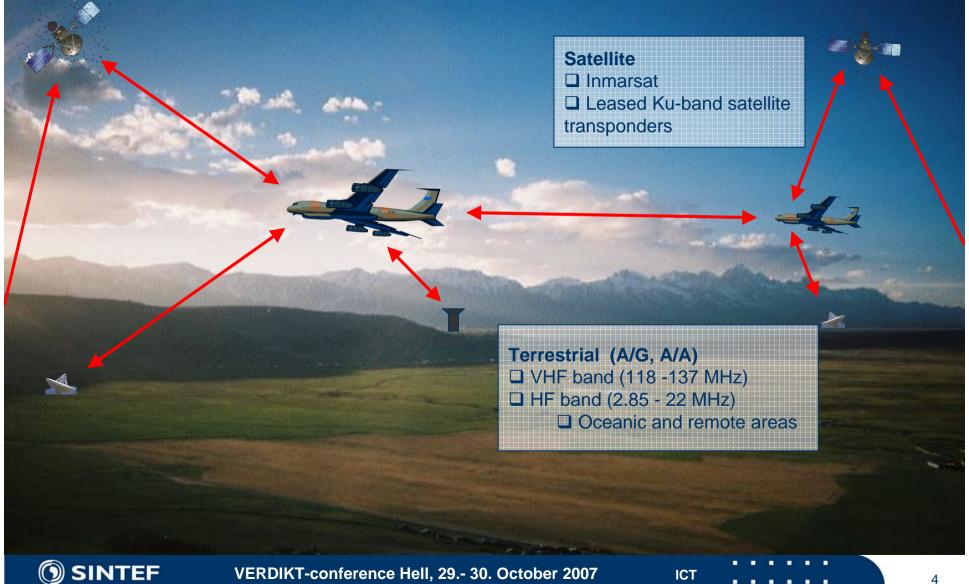
Jan Erik Håkegård

Outline


- Overview aeronautical communication today
- International activities
- SECOMAS activities
- Impact on Norwegian industry

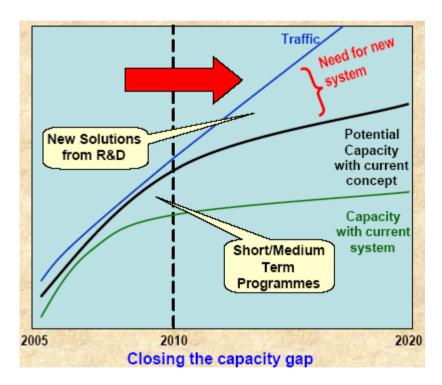
Overview Aeronautical communication services

- Air Traffic Services (ATS)
 - Pilot air space controller
 - Air Traffic Control (ATC)
 - Primarily voice
 - Simple SMS—type of digital services
- Aeronautical Operational Control (AOC)/ Airline Administrative Communication (AAC) Services
 - Aircraft AOC centre/company/operational staff at airport
 - Voice and data
- Aeronautical Passenger Communication (APC)
 - Commercial services
 - Emailing
 - Broadband internet access
 - Telephony
 - Live-TV
 - Value added services (hotel reservation, car hire)
 - Ex: Connexion by Boeing (ended Dec. 2006)



Several systems necessary to accommodate different types of services

Aeronautical communications Types of links



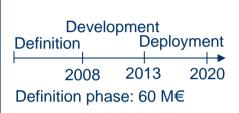
Why are new systems necessary?

- Traffic in 2005
 - 9.2 million flights per year
 - Peak day
 - 30 000 flights by commercial airlines
 - 200 000 flights by general aviation aircraft
 - Numerous military aircraft
- Estimated traffic in 2025
 - 22 million flights per year
 - Peak day
 - 72 000 flights by commercial airlines
 - 480 000 flights by general aviation aircraft
 - Numerous military aircraft

Source: Expectations of SESAR, Bernard Miaillier, D1 Forum

Increase by factor 2.4

Today's Air Traffic Management (ATM) systems are not capable to support this increase



International programs

- International activities to develop new ATM systems
 - In Europe: SESAR
 - 50 % financed by EC
 - 50 % financed by Eurocontrol

■ In USA: NGATS

Provide input to ICAO for global solutions

Goal: to develop new ATM system providing:

Increased capacity
Improved safety and security
Reduced impact on environment
Reduced operating cost

What is the impact on the communication systems?

- Bandwidth congestion
 - Primarily in the VHF band
 - High density airspace (e.g. Core Europe)

Solutions:

- Increase spectrum efficiency in the VHF band (8.33 kHz channels)
- Migrate from voice communication to data communication (VDL 2/3/4)
- Open new frequency bands for aeronautical communication and develop systems for these bands
 - VHF band: 108-118 MHz
 - L-band: Portions within the 960-1164 MHz
 - C-band: Portions within the 5000-5150 MHz (airports)
- Develop a satellite component for ATM

L-band Digital Aeronautical Communication System (L-DACS)

- Future Communication Study (Eurocontrol/FAA)
- Two alternative solutions LDACS-1 and LDACS-2


	10	ار	
Options	Access	Modulation	Origins
	Scheme	Туре	
L-DACS 1	FDD	OFDM	B-AMC, P34
L-DACS 2	TDD	CPFSK/GMSK	LDL, AMACS
	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.		

- Conclusions presented to ICAO in October 2007
- Decision on one system to be taken in 2009
- Deployment in 2020

Airport communications

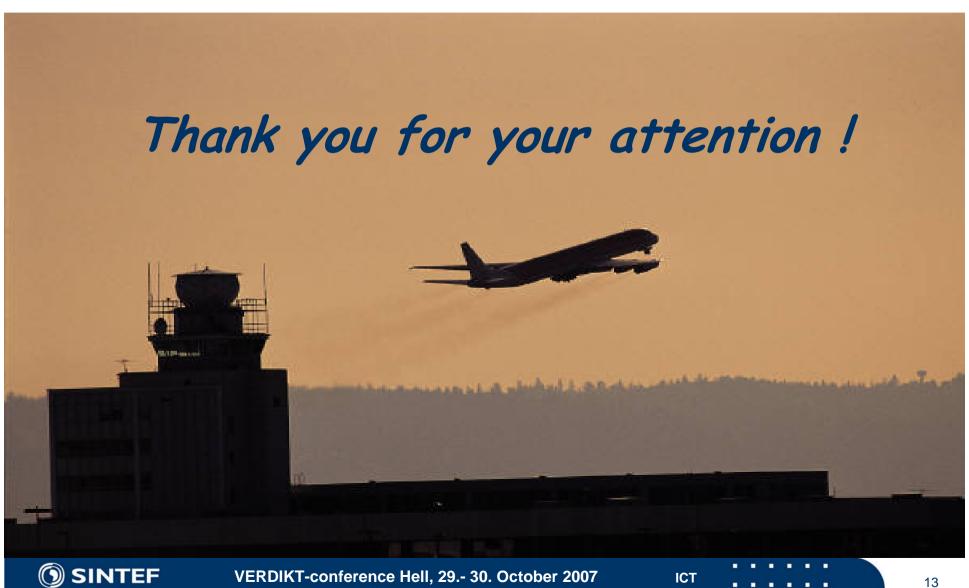
Satellite component

- Two ARTES-10 (ESA) studies (K.O. Dec 2007):
 - Communication System Design
 - Analysis and Definition of Satellite System
- Objectives
 - Preparation work to support the SESAR Master Plan
 - Initiate development of the communication standard
 - Initiate identification of the satellite system architecture
 - Consider non-technical issues from the start
 - Business case
 - Service provision and governance model
 - ESA hand-over after development/deployment
 - Validation and qualification with SESAR
 - Support frequency allocations

SECOMAS activities

- Theoretical path
 - MIMO, ST-coding
 - Link adaptation
 - Cooperative and opportunistic transmission
 - Advanced channel coding
 - Multi-carrier
 - Networking concepts
 - Cross-layer design

- Industrial path
 - Satellite component
 - Participate in ARTES-10
 - IEEE802.16e
 - Analytical approach
 - Simulations
 - Validation through measurements
 - Heterogeneous networks
 - Distribute traffic among various network options, respecting the services' QoS requirements


Impact on Norwegian industry

- Provide link to SESAR and other international activities
- Be updated on the development of future aeronautical communications solutions
- Access to relevant competence from the research communities
- Get access to general results that can be used in different types of systems

