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Application: petroleum production and CO2 storage

Simulation support for two main areas:

I Increase recovery of petroleum resources (planning and
management): understand reservoir and fluid behavior, test
hypotheses and scenarios, assimilate data, optimize
production, etc.

I Ensure storage of carbon: how fast can one inject, will the
injected CO2 leak, where will the CO2 move?

−→ robust, efficient, and accurate simulation methods for partial
differential equations with highly heterogeneous parameters on
complex grids
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Porous media flow – a multiscale problem

The scales that impact fluid flow in subsurface rocks range from

I the micrometer scale of pores and pore channels

I via dm-m scale of well bores and laminae sediments

I to sedimentary structures that stretch across entire reservoirs

−→
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Porous media flow – a multiscale problem
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Example: injection and migration of CO2

Physical process:

I supercritical CO2 injected into an aquifer
or abandoned reservoir

I forms a liquid phase that is lighter, less
dense, and weakly soluble in water

I the CO2-phase will migrate upward in the
formation, limited above by the caprock,
displacing the resident brine

I the displacement front is mainly driven by
gravity (but also processes like
dissolution, vaporization, salt
precipitation, drying, etc)
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Example: injection and migration of CO2

Spatial scales:

I horizontal extent of geological formation:
10–100 km

I height of formation: 10–200 m

I the tip of the CO2-plume: 0.1–1 m

Time scales:

I pressure buildup: hours

I injection period: 20–50 years

I migration: 100–10000 years

See plenary talk by Prof. M. Celia.
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Macroscopic models of flow in porous media

I Single-phase, incompressible flow: conservation of mass + Darcy’s law:

~v = −µ−1K∇p, ∇ · ~v = q

I Multiphase, compressible flow:

~v = −λK
`
∇p−

X
j
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Grid – volumetric representation of the reservoir

The structure of the reservoir (geological surfaces, faults, etc)

The stratigraphy of the reservoir (sedimentary structures)

Petrophysical parameters (permeability, porosity, net-to-gross, . . . )

6 / 22



Grid – volumetric representation of the reservoir

Industry standard: stratigraphic grids (corner-point, 2.5D PEBI, etc)

Geometrical and numerical challenges: high aspect ratios, unstructured
connections, many faces/neighbors, small faces, . . .
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Research challenge: consistent discretizations

Poisson type problem:

∇ · ~v = q, ~v = −µ−1K∇p

Design of methods capable of handling anisotropic
(full-tensor) K on general polyhedral grids with curved faces

Basic discretization – relation between flux and pressure on
a single cell E

MvE = pe− π

M =
1

|E|CK
−1CT +Q⊥NSMQ

⊥
N

T

General class: TPFA, MPFA, mixed, mimetic, . . .

Mixed (hybrid) formulation:

24 B C D

CT 0 0

DT 0 0

35 24 v
−p
π

35 =

240
q
0

35
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Research challenge: consistent discretizations
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Research challenge: computationally efficient/tractable

Simulators incapable of handling required model
detail. Example:

I geological models: 107–109 cells

I simulators: 105–106 cells

Demand for complexity is continuously increasing.

Particular challenge: lack of scale separation
Upscaling (homogenization): bottleneck
in workflow, inefficent and not
sufficiently robust

Multiscale methods
I Up-/downscaling in one step

I Pressure on coarse grid

I Fluxes on fine grid

Incorporate impact of subgrid
heterogeneity in approximation spaces

Advantages: utilize more geological data,
more accurate solutions, geometrical
flexibility
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Multiscale methods

Coarse partitioning: Flow field with subresolution:

⇓ ⇑
Local flow problems:

⇒

Flow solutions → basis functions:
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Multiscale mixed finite elements

Make the following assumption

v = Ψvc + ṽ

p = Ipc + p̃ Ψ – matrix with basis functions
I – prolongation from blocks to cells

Reduction to coarse-scale system:[
ΨT 0
0 IT

] [
B C

CT 0

] [
Ψvc + ṽ
−Ipc − p̃

]
=
[

0
ITq

]

[
ΨTBΨ ΨTCI
ITCTΨ 0

] [
vc
−pc

]
=

 −ΨTBṽ + ΨTCp̃

qc − ITCTṽ



Additional assumptions:

1 Since p is immaterial, assume wTp̃ = 0. Hence, pic =
∫

Ωi
wpdx

2 Assume that Ψ spans velocity space, i.e., ṽ ≡ 0.
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p = Ipc + p̃

Multiscale basis function:»
B C

CT 0

– »
Ψ
Φ

–
=

»
0
w

–
Set of equations located to coarse
blocks. Flow driven by weight w

Reduction to coarse-scale system:[
ΨT 0
0 IT

] [
B C

CT 0

] [
Ψvc + ṽ
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Additional assumptions:

1 Since p is immaterial, assume wTp̃ = 0. Hence, pic =
∫

Ωi
wpdx

2 Assume that Ψ spans velocity space, i.e., ṽ ≡ 0.
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Constructing multiscale basis functions

Example: Velocity basis function ψij solves a
local system of equations in Ωij :

~ψij = −µ−1K∇ϕij

∇ · ~ψij =

8><>:
wi(~x), if ~x ∈ Ωi,

−wj(~x), if ~x ∈ Ωj ,

0, otherwise.

with no-flow conditions on ∂Ωij

Source term: wi ∝ trace (Ki) drives a unit flow
through Γij .

If there is a sink/source in Ti, then wi ∝ qi.

Ωi Ωj

Ωij

Homogeneous medium Heterogeneous medium

Alternative: use good approximation to set ’global’ boundary conditions for

each block
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Residual correction

To get a convergent method, we need to also account for variations that
are not captured by the basis functions1 −→ solve a residual equation[

B C

CT 0

] [
Ψvc + ṽ

−Ipc −DλΦvc − p̃

]
=
[
0
q

]

[
B C

CT 0

] [
ṽ
−p̃

]
=
[
(CDλΦ−BΨ)vc + CIpc

q −CTΨvc

]
To solve this equation, we will typically use a (non)overlapping

domain-decomposition method.

1
The term CDλΦvc corresponds to subscale pressure variations modelled by the numerically computed

basis functions for pressure, which should scale similar to Ψ since BΨ−CΦ = 0.
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Advantage: flexible generation of coarse grids

(Unique) grid flexibility:

Given a method that can solve local flow problems on the subgrid, the
MsMFE method can be formulated on any coarse grid in which the
coarse blocks consist of a connected collection of fine-grid cells
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Advantage: computational efficiency

Multigrid will often be more efficient when computing pressure once.

Why bother with multiscale pressure solvers?

I Full multiphase simulation:
O(102) time steps.

I Basis functions need not be
recomputed or be updated
infrequently

Also:

I Lower memory requirements –
possible to solve very large
problems

I Easy parallelization –
computation of basis functions

8x8x8   16x16x16 32x32x32 64x64x64
0

1

2

3

4

5

6

7

8
x 10

7

Basis functions
Global system

Fine scale solution (AMG) O(n     )1.2

Coarse grid, derived from fine-scale 1283 grid
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Where can multiscale methods be used?

Typical applications

I ’Interactive’ screening of flow patterns during geological modelling

I Simulation of multiple realizations to quantify uncertainty

I Production optimization: well rates, well placement, . . .

I History matching

Key ideas:

I Having 80–90% of the answer in 5–10% of the time enables
geologists and engineers to explore more modelling choices

I ’Full physics’ is seldom needed early in the modelling workflow,
focus on the important effects
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Example: highly efficient streamline simulation

SPE 10, Model 2:

Producer A

Producer B

Producer C

Producer D

Injector

Tarb
ert

Upper Ness

Fine grid: 60× 220× 85
2000 days production
25 time steps

Inhouse code from 2005:

multiscale: 2 min and 20 sec
multigrid: 8 min and 36 sec

Fully unstructured Matlab/C
code from 2010:

mimetic : 5–6 min

Water-cut curves at the four producers
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upscaling/downscaling, multiscale, fine grid
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Example: highly efficient streamline simulation

Computational efficiency of a prototype code fine-scale mimetic versus a
multiscale mimetic solver in a commercial solver. Neither prototypes have been
optimized

Three versions of the SPE10 model (upscaled, original, 3× 3 repeat)

Model Solver Grid Steps Init Basis Assembly Pressure Transp Total
56 k AMG 30×110×17 13 3 — 26 96 2 129

50 8 — 89 261 14 373
M-S 6× 22×17 13 3 13 2 2 5 27

50 8 11 2 4 18 44
1.1 M AMG 60×220×85 13 46 — 525 1,787 38 2,424

M-S 12× 44×17 13 46 350 27 14 45 514
10 M AMG 180×660×85 13 470 — 4,803 25,538 398 31,401

M-S 36×132×17 13 470 2,597 193 169 305 3,925
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Example: history-matching a million-cell model

Assimilation of production data to calibrate model

I 1 million cells, 32 injectors, and 69 producers

I 2475 days ≈ 7 years of water-cut data

Generalized travel-time inversion (quasi-linearization of misfit functional) with
analytical sensitivities along streamlines, Datta–Gupta et al.

CPU-time (wall clock)
Solver Total Pres. Transp.

Multigrid 39 min 30 min 5 min
Multiscale 17 min 7 min 6 min

Computer: 2.4 GHz Core 2 Duo, with 2 GB RAM
History match: 7 forward simulations, 6 inversions

No parallelization of basis functions, streamline tracing, and 1D transport solves
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Example: rate optimization of water-flood

Adjoint-based multiscale method:

Grid model: from offshore Norway
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Forward simulations:
44 927 cells, 20 time steps,
< 5 sec in Matlab, ∼ 100× speedup

Specialized simulator with different
grid for pressure and transport solvers

Pressure grid:

Transport grid:

In addition: efficient communication
between the two coarse grids
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Current research: MsMFE for compressible flow

Simplest approach – four key components:

1 Elliptic basis functions, constructed with w(x) ∝ φ(x)

2 Coarse-scale system[
ΨTBΨ ΨTCI

IT(CTΨ− P νDλΦ) ITP νI

] [
vν+1
c

−pν+1
c

]
=

[
ΨTfν
ITgν

]

3 Residual equation[
B C

CT P

] [
v̂ν+1

−p̂ν+1

]
=

[
f c −ΨTBΨvc + ΨTCIpc

gc − IT(CTΨ− P νDλΦ)vc + ITP νIpc

]

4 Iterations over multiscale and residual equations
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Example: primary production

I Shallow-marine reservoir (realization
from SAIGUP)

I Model size: 40× 120× 20

I Initially filled with gas, 200 bar

I Single producer, bhp=150 bar

I Multiscale solution for different
tolerences compared with fine-scale
reference solution.

Rate in well perforation (m3/day)
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Summary

Presented a multiscale framework that can be used to reduce
computational complexity by

I resolving effects on different scales

I utilizing sparsity

I (systematically) reusing computations

Well tested for two-phase, incompressible flow. Research needed for more
complex flow physics:

I basis function dictionary by bootstrapping

I model reduction

I better error control
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Matlab Reservoir Simulation Toolbox (MRST)

MRST core

I routines for creating and manipulating grids and physical
properties

I basic incompressible flow and transport solvers

Modules

Add-on software that extends, complements, and overrides existing MRST features.
Presently implements more advanced solvers and tools:

I adjoint methods, experimental multiscale, fractures, MPFA, upscaling

I black-oil models, three-phase flow, vertically integrated models, . . .

I streamlines, (flow-based) coarsening, . . .

I Octave support, C-acceleration, . . .

Download

http://www.sintef.no/MRST/

Version 2011a was released on the 22nd of February, 2011, and can be downloaded
under the terms of the GNU General Public License (GPL)

22 / 22


