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Multiscale Pressure Solvers

Two-level methods for equations:

with a near-elliptic behavior

with strongly heterogeneous coefficients

without scale separations

Aim:

describe global flow patterns on coarse grid

accurately account for fine-scale structures

Provide a mechanism to recover approximate fine-scale solutions
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The Multiscale Mixed Finite Element (MsMFE) Method
The algorithm in a nutshell

1) Generate coarse grid (automatically)

44 927 cells
↓
148 blocks

9 different coarse blocks

3) Compute basis functions

Solve flow problem for all pairs of blocks

2) Detect all adjacent blocks

4) Build global solution

Basis functions: building blocks for global solution
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The Mixed Finite Element (MsMFE) Method
Computation of multiscale basis functions

Ωi Ωj

Ωij

Each cell Ωi: pressure basis φi
Each face Γij : velocity basis ψij

~ψij = −λK∇φij

∇ · ~ψij =


wi(x), x ∈ Ωi
−wj(x), x ∈ Ωj

0, otherwise

Homogeneous K:

Heterogeneous K:
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The Mixed Finite Element (MsMFE) Method
Interpretation of the weight function

The weight function distributes ∇ · v on the coarse blocks:

(∇ · v)|Ωi =
∑
j

∇ · (vijψij) = wi
∑
j

vij

= wi

∫
∂Ωi

v · nds = wi

∫
Ωi

∇ · v dx

Different roles:

Incompressible flow: ∇ · v = q
Compressible flow: ∇ · v = q − ct∂tp−

∑
j cjvj · ∇p
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The Mixed Finite Element (MsMFE) Method
Choice of weight function, wi = θ(x)/

R
Ωi
θ(x) dx

Incompressible flow:∫
Ωi

qdx = 0, θ(x) = trace(K(x))∫
Ωi

qdx 6= 0, θ(x) = q(x)

Compressible flow:

θ ∝ q: compressibility effects concentrated where q 6= 0
θ ∝ K: ∇ · v over/underestimated for high/low K

Another choice motivated by physics:

θ(x) = φ(x), Motivation: ct
∂p

∂t
∝ φ
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The Mixed Finite Element (MsMFE) Method
Key to effiency: reuse of computations

Computational cost consists of:

basis functions (fine grid)

global problem (coarse grid)

High efficiency for multiphase flows:

Elliptic decomposition

Reuse basis functions

Easy to parallelize

Example: 1283 grid

# operations versus upscaling factor
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Fine scale solution (AMG) O(n     )1.2
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The Mixed Finite Element (MsMFE) Method
Recap from 2007 SPE RSS: million-cell models in minutes

SPE 10, Model 2:
Producer A

Producer B

Producer C

Producer D

Injector

Tarb
ert

Upper Ness

Fine
grid: 60× 220× 85
Coarse grid: 5× 11× 17
2000 days production
25 time steps

multiscale + streamlines:
142 sec on a 2.4 GHz PC

Water-cut curves at the four producers
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upscaling/downscaling, multiscale, fine grid
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MsMFE for Complex Grids
Challenges posed by grids from real-life models

Unstructured grids: (Very) high aspect ratios:

800× 800× 0.25 m

Skewed and degenerate cells: Non-matching cells:
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MsMFE for Complex Grids
Applicable to general unstructured grids

Coarse blocks: (arbitrary) connected collection of cells
−→ fully automated coarsening strategies

Coarse blocks: logically Cartesian in index space
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MsMFE for Complex Grids
Fine-grid formulation

Discretization using a mimetic method (Brezzi et al):

uE = λTE(pE − πE),

TE = |E|−1NEKEN
T
E + T̃E

NE : face normals
XE : vector from face to cell centroids
T̃E : arbitrarily such that T̃EXE = 0

Key features:

Applicable for general polyhedral cells

Non-conforming grids treated as conforming polyhedral

Generic implementation for all grid types

Monotonicity as for MPFA
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MsMFE for Complex Grids
Example: single phase, homogeneous K, linear pressure drop

Grid TPFA MFDM

MsMFEM+TPFA MsMFEM + MFDM
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MsMFE for Compressible Black-Oil Models
Fine-grid formulation

Pressure equation:

c
∂p

∂t
+∇ · ~u− ζ~u ·K−1~u = q, ~u = −Kλ∇p

Time-discretization and linearization:

cν−1
pnν − pn−1

∆t
+∇ · ~unν − ζnν−1~u

n
ν−1 ·K−1~unν = q

Hybrid system: B C D

CT − V T
ν−1 P ν−1 0

DT 0 0

  uν
−pν
πν

 =

 0
P ν−1p

n−1 + q
0


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MsMFE for Compressible Black-Oil Models
Coarse-grid formulation

 ΨTBΨ ΨTCI ΨTDJ
C̃

T
ITPI 0

J TDTΨ 0 0


 u
−p
π

 =

 0
ITPpnf

0


Ψ – velocity basis functions
Φ – pressure basis functions
I – prolongation from blocks to cells
J – prolongation from block faces to cell faces

C̃ = ΨT(C − V )I −DλΦTPI

New feature: fine-scale pressure

uf ≈ Ψu, pf ≈ Ip+ ΦDλu, Dλ = diag(λ0
i /λi)
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MsMFE for Compressible Black-Oil Models
Example 1: tracer transport in gas (Lunati&Jenny 2006)

constant K lognormal K

p(0, t) = 1 bar, p(x, 0) = 10 bar, coarse grid: 5 blocks, fine grid: 100 cells

Remedy: correction functions (Lunati, Jenny et al; Nordbotten)
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MsMFE for Compressible Black-Oil Models
Example 1: tracer transport in gas (Lunati&Jenny 2006)

Approximate residual equation by

û =
∑

Ωi⊂Ω

ûi, p̂ =
∑

Ωi⊂Ω

p̂i,

such that u ≈ ums + û and p ≈ pms + p̂.

Local problems:

(ûi, p̂i) solves residual equation locally in
Ω̂i such that

Zero right-hand-side in Ω̂i \ Ωi

Zero flux BCs on ∂Ω̂i

16 / 1



MsMFE for Compressible Black-Oil Models
Example 1: tracer transport in gas (Lunati&Jenny 2006)

Non-overlapping correction:

pr
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u
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MsMFE for Compressible Black-Oil Models
Example 1: tracer transport in gas (Lunati&Jenny 2006)

Overlapping O(H/2) correction:
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MsMFE for Compressible Black-Oil Models
Example 2: block with a single fault

pressure saturation
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Fine grid: 90× 10× 16 cells. Coarse grid: 6× 2× 4 blocks.

1000 m3/day water injected into compressible oil at 205 bar (pbh of 200 bar).
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Conclusions and Outlook

The MsMFE method:

is flexible with respect to grids

allows automated coarsening

requires correction functions for compressible flow

Future research:

adaptivity of basis/correction functions

parallelization

error estimation (via VMS framework)?
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