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Introduction: History matching

History matching is the procedure of modifying the reservoir
description to match measured reservoir responses.
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Introduction: Hist

-matching loop
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Challenges in history-matching loop

[ Clll"l’ﬁllt TEServoir pm'a‘meters

l Problems:

Flow simulation @ highly under-determined
problem — non-uniqueness

l @ errors in model, data, and
Evaluate misfit methods

(observed - calculated)

@ nonlinear forward model

@ non-convex misfit functions

Is misfit small enough

e forward simulations are
computationally demanding

T HM method/Inversion
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Challenge |: Non-convex misfit function

Inversion method: Generalized Travel-Time Inversion (GTTI)
with analytic sensitivities [Vasco et al. (1999), He et al. (2002)]

The generalized travel time is defined as the 'optimal’ time—shift
that maximizes
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Travel-time inversion

Basic underlying principles for the history—matching algorithm
@ Minimize travel-time misfit for water—cut by iterative
least-square minimization algorithm.
@ Preserve geologic realism by keeping changes to prior geologic
model minimal (if possible).
@ Only allow smooth large-scale changes. Production data have
low resolution and cannot be used to infer small-scale

variations.

Minimization of functional:
At : Travel—time shift

S : Sensitivity matrix Regularization

m : Reservoir |At — S6R| + G1||0R|| + B2 || LR

parameters —_— ——
norm smoothing

S computed analytically along streamlines from a single flow simulation
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Streamline-based history matching

Features of streamlines

o Very well suited for modeling
large heterogeneous multi-well
systems dominated by convection

@ Generally fast flow simulation

@ Delineate flow pattern
(injector-producer pairs)

@ Enables analytic sensitivities

Source: www.techplot.com

Streamline-based history-matching methods
@ Assisted history matching
o (Generalized) travel-time inversion methods
@ Streamline-effective properties methods

@ Miscellaneous
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Example: Uncertainty quantification

Simple two-phase model (end-point mobility M = 0.5) on a 2D
horizontal reservoir, lognormal permeability
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Statistical analysis of mean and standard deviation
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Challenge Il: long runtime for forward simulations

—
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HM method/Inversion
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Streamline simulation much
faster than conventional
FD-methods.

Still, room for improvement.

Observations:

@ pressure solver most
expensive part of simulation

@ data changes very little
from one simulation to the
next
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Challenge Il: long runtime for forward simulations
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Streamline simulation much
faster than conventional
FD-methods.

Still, room for improvement.

Observations:
@ pressure solver most
expensive part of simulation

@ data changes very little
from one simulation to the
next

Reuse computations in areas
with minor changes —
multiscale methods
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Multiscale pressure solver

Upscaling and downscaling in one step. Runtime like coarse-scale
solver, resolution like fine-scale solver.

Fine grid: 75 x 30. Coarse grid: 15 x 6

Basis functions for each pair
of coarse blocks T; U T :

U = —AKVO,;

Global linear system
with 249 unknowns:

Vw=gq, v=-MKVp

Coarse grid: pressure and fluxes. Fine grid: fluxes
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Multiscale methods: efficiency vs accuracy

Water cuts obtained by never updating basis functions:

Water-Cut Water-Cut

0 05 1 15
PVI

favorable (M = 0.1) unfavorable (M = 10.0)

1: Fluvial permeability field,
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Multiscale methods: efficiency vs accuracy

Ex: g5-spot, SPE 10 (layer 85)*, 60 x 220 — 10 x 22

Improved accuracy by adaptive updating of basis functions:

Water-Cut Water-Cut

|
,‘ . . d . . = = = Multiscale
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no updating adaptive updating
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Further computational savings

Can also reuse basis functions from previous forward simulation.
General idea: use sensitivity to steer updating

Stacked sensitivities
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History matching on heological models

Generalized travel-time inversion on million-cell model

Assimilation of production data to calibrate model
@ 1 million cells, 32 injectors, and 69 producers
@ 2475 days ~ 7 years of water-cut data

Analytical sensitivities along streamlines + travel-time inversion (quasi-linearization of
misfit functional)

‘Time-shift misfit for water-cut Amplitude misfitfor water-cut

N
——-TPFA \ ——-TPFA
12007\ —— MsMFEM 28 | ——MsMFEM

Total misfitfor all wells
Total misft for all wells

3
teration

Time-residual Amplitude-residual

Computation time: ~ 17 min on a desktop PC (6 iterations).
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History matching on geological models

Residuals and timing results, Intel Core 2 Duo (2.4 GHz, 4Mb cache)

Misfit CPU-time (wall clock)
Solver Oo/M T A | Alnk | Total Pres. | Transp.
Initial — | 100.0 | 100.0 | 0.821 — — —
Std. (7 pt.) 0 89 | 535 | 0.806 | 64 min | 33 min | 28 min
Std. (7 pt.) M 9.6 | 50.4 | 0.806 | 39 min | 30 min 5 min
Multiscale 0] 112 | 473 | 0812 | 43 min | 7 min | 32 min
Multiscale M 104 | 454 | 0828 | 17 min | 7 min 6 min
Misfit:

Time-shift misfit ||At]|>

Amplitude misfit [3°, > (foP* — fe')?]'/?

Permeability discrepancy 1/N 3TN |In ke — In kmatch]
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Robustness with respect to data reduction

Uncertainty quantification, revisited

Mean time-shif residual Mean amplitude residual Mean average discrepancy of log(K)
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Robustness with respect to data reduction

Million-cell model, revisited

Reduction in residuals

Time-Shit Residual Ampliitude Residual) Average Discrepancy of log(K)
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Corresponding speedup:
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Unstructured grids (done for inversion algorithm)
Corner-point grids (testing to be done on Norne-model)
Other types of data / more general flow

Inclusion of seismics

Use of sensitivities for other optimization workflows
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