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Multiscale Pressure Solvers

Efficient flow solution on complex grids — without upscaling

Basic idea:
@ Upscaling and downscaling in one step
@ Pressure on coarse grid (subresolution near wells)

@ Velocity with subgrid resolution everywhere

Example: Layer 36 from SPE 10

Pressure field computed with mimetic FDM Pressure field computed with 4M

"
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Multiscale Pressure Solvers
Two main contenders...

Multiscale mixed finite elements Multiscale finite volumes
Developed by SINTEF Developed by Jenny/Lee/Tchelepi/..
Main focus on complex grids Focus on flow physics

@ Corner-point grids in 3D @ Gravity and capillarity

@ Triangular/nonuniform/PEBI @ Black-oll

@ Automated coarsening @ Compressibility

Complex wells

+ Stokes—Brinkman, wells, black-oil

Applications: history match, optimization Only for Cartesian grids, so far.
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Geological Models as Direct Input to Simulation
Complex reservoir geometries

Challenges:
@ Industry-standard grids are often nonconforming and contain
skewed and degenerate cells
@ There is a trend towards unstructured grids
@ Standard discretization methods produce wrong results on
skewed and rough cells

@ The combination of high aspect and anisotropy ratios can give
very large condition numbers

Corner point:
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The MsMFE Method in a Nutshell
From upscaling to multiscale methods

Standard upscaling:
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Coarse grid blocks: EEEES
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Flow problems: PT
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The MsMFE Method in a Nutshell

From upscaling to multiscale methods
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From upscaling to multiscale methods

Standard upscaling:
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The MsMFE Method in a Nutshell

From upscaling to multiscale methods

Standard upscaling: Multiscale method:
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The MsMFE Method in a Nutshell

From upscaling to multiscale methods

Standard upscaling: Multiscale method:
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Flow problems:
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The MsMFE Method in a Nutshell

From upscaling to multiscale methods

Standard upscaling: Multiscale method:
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The MsMFE Method in a Nutshell
Mixed formulation for incompressible flow

Mixed formulation:

Find (v,p) € Hy'™ x L? such that
-1 1,div
/()\K) u-vdw—/pV-udsz, Vu € Hy™,

/ev-vda;—/qedx, Ve e L2.

Multiscale discretization:

Seek solutions in low-dimensional subspaces in which local
fine-scale properties are incorporated into the basis functions
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The MsMFE Method in a Nutshell
Linear system and basis functions

Discretisation matrices:

’ bij = : i (AK) 1y da,
2 90-0. "k

g ci= [ V- ida
Q

Raviart—=Thomas: Multiscale basis function:

Ve
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The MsMFE Method in a Nutshell
Grids and basis functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.
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The MsMFE Method in a Nutshell
Grids and basis functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.

We construct a coarse grid, and choose the discretisation spaces V'
and U™? such that:
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The MsMFE Method in a Nutshell
Grids and basis functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.

We construct a coarse grid, and choose the discretisation spaces V'
and U™? such that:

@ For each coarse block Tj, there is a basis function ¢; € V.
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The MsMFE Method in a Nutshell
Grids and basis functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.

)

We construct a coarse grid, and choose the discretisation spaces V'
and U™? such that:

@ For each coarse block Tj, there is a basis function ¢; € V.

@ For each coarse edge I';;, there is a basis function v;; € U™?.
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he MsMFE Method in a Nutshell
Local flow problems

For each coarse edge [';;, define a basis
function with unit flux through I';; and
no flow across 9(7; U 7).

Local flow problem:

wi(z), for x € T;,
ij = —AKV ¢y, V=

Vi %is Vi —wj(z), forxzeTj,

with boundary conditions v;; - n = 0 on 9(T; U Tj).

Global velocity:

v = Zij v;;¥ij, Where v;; are (coarse-scale) coefficients.

@ SINTEF Applied Mathematics B 05/12/2008 < O+ 9/63



The MsMFE Method in a Nutshell

Automated generation of coarse grids

The MsMFE method allows fully automated coarse gridding
strategies: grid blocks need to be connected, but can have
arbitrary shapes

Corner-point grids: the coarse blocks are logically Cartesian in
index space
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The MsMFE Method in a Nutshell

Workflow with automated upgridding in 3D

1) Coarsen grid by uniform partitioning in
index space for corner-point grids

44927 cells

l
148 blocks

v

9 different coarse blocks

2) Detect all adjacent blocks

3) Compute basis functions

w; (),

Vei; = {_wj(x)7

L

==

for all pairs of blocks

4) Block in coarse grid: component for
building global solution

v
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The MsMFE Method in a Nutshell

Computational efficiency: order-of-magnitude argument, 128 x 128 x 128 grid

Multigrid more efficient when computing pressure once.
Why bother with multiscale pressure solvers?

x10"

e Full simulation: O(10?) time
steps. T

T T
I Computation of basis functions
I Solution of global system

6F

@ Basis functions need not be Fine scale solution
recomputed

Also:

@ Possible to solve very large | |
problems | |
o Easy parallelization

Bx8x8 16x16x16 32x32x32 64x64x64
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The MsMFE Method in a Nutshell

Example: 10" SPE Comparative Solution Project

SPE 10, Model 2: Water-cut curves at the four producers

Producer A Producer B

0.8
E 06
g
=04
02 Reference
MsMFEM
Nested Gridding
00 0 500 1000 1500 2000
Time (days) Time (days)
. . Producer C Producer D
Fine grid: 60 x 220 x 85 ' !

Coarse grid: 5 x 11 x 17 o9

2000 days production gee goe
204 £ 04
4M + streamlines: o2 = Veren 02 = Do

lested Gi

ng Nested Gridding

1500 2000

2 min 22 sec on 24 GHZ 0 500 1000 1500 2000 0 500
desktop PC

1000
Time (days) Time (days)

== upscaling/downscaling, == 4M/streamlines, == fine grid
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Implementation Details for MsMFE

There are certain choices....

Choice of weighting function in definition of basis functions
Boundary conditions (overlap and global information)
Assembly of linear system

Fine-grid discretization

Generation of coarse grids
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Implementation Details for MsMFE

Choice of the weight function

Interpretation of the weight function:
V v ‘T = sz Uz]wz]) - wlsz

:wi/ v'nds:wi/ Vv
or, T;

That is, w; distributes V - v among the cells in the coarse grid

Different roles:

Incompressible flow: V-v=gq
Compressible flow: V-v=q—cOp— Zj cjvj - Vp

SINTEF
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Implementation Details for MsMFE

Weight function: incompressible flow

For incompressible flow, we have that

0, if |, qdx =0,
(V . U)|Ti = w; Z Vij, szj = {fT oz, sz
J i

Z otherwise

Thus

/qd:c:O = V-v=0, VYw; >0
T;

/qda:yéo = V.-v=gq, ifwizi
T;
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Implementation Details for MsMFE

Choice of weight function: uniform

Uniform source:

low (k;) and high (kp,) permeability streamlines from basis function
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Implementation Details for MsMFE

Choice of weight function: scaled

Scaled source:

trace( K (x))

[y, trace(K(€)) de @

Relative error in energy-norm

wj(z)

—O6— Scaled source
— B - Constant source
0.8
]
0.6 "\ 9
7] / \
s\ \ Iy
;N oy
0.4 N \ /
/ ] _d \
02 g
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Implementation Details for MsMFE

Choice of weight function: compressible flow

Compressible flow:

(Vo) = wi vy,
j

Z'Uij = /T (q—Ct% + anva - Vp)(iw
j 7

Ideas from incompressible flow do not apply directly:
@ w; X ¢q concentrates compressibility effects where g # 0

@ w; < K overestimates V - v in high-permeable zones and
underestimates in low-permeable zones

Better choice:

w; = % Motivation: ¢;0ip < ¢
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Domain of Support Basis Functions

Strategies for handeling wells in the MsMFE method

Strategy
Standard: Use initial partitioning as is J
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Domain of Support Basis Functions

Strategies for handeling wells in the MsMFE method

Strategy
Adapted: Initial partition altered to put wells near block center J
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Domain of Support Basis Functions

Strategies for handeling wells in the MsMFE method

Strategy
Refined: Altered partition further sub-divided near wells J
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Domain of Support Basis Functions

Strategies for handeling wells in the MsMFE method

Strategy

Well oversampling: Support domain for well /block enlarged to
include additional cells about well trajectory
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Domain of Support Basis Functions

Strategies for handeling wells in the MsMFE method

Strategy

Well & block oversampling: Well oversampling + inclusion of
additional cells about coarse blocks
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Implementation Details for MsMFE

Discretization on real geometries

Corner-point grids:
@ areal 2D mesh of vertical or
inclined pillars
@ each volumetric cell is restriced by
four pillars

@ each cell is defined by eight corner
points, two on each pillar
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Implementation Details for MsMFE

Cell geometries are challenging from a discretization point-of-view

Skewed and deformed grid Non-matching cells:

- U
O s

Very high aspect ratios (and centroid outside the cell):

Dimensions: 800 m x 800 m X 0.25 m
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Implementation Details for MsMFE

The mimetic finite difference method

Mimetic finite-difference methods may be interpreted as a
finite-volume counterpart of mixed finite-element methods.

Key features:
@ Applicable for models with general polyhedral grid-cells.

@ Allow easy treatment of non-conforming grids with complex
grid-cell geometries (including curved faces).

@ Generic implementation: same code applies to all grids (e.g.,
corner-point/PEBI, matching/non-matching, ...).
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Implementation Details for MsMFE

The mimetic finite difference method, Brezzi et al., 2005

Express fluxes v = (v1,v2,...,v,)" as:

V= _T(p _p0)7

where p = (p1,p2,...,pn)".
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Implementation Details for MsMFE

The mimetic finite difference method, Brezzi et al., 2005

Express fluxes v = (v1,v2,...,v,)" as:

V= _T(p _p0)7

where p = (p1,p2,...,pn)".
Impose exactness for any linear pressure
field p = x"a + ¢ (which gives velocity
equal to —Ka):

v = 7A1’n/;rKCL

pi —po = (x; — 930)Ta-
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Implementation Details for MsMFE

The mimetic finite difference method, Brezzi et al., 2005

Express fluxes v = (v1,v2,...,v,)" as:
v = _T(p _p0)7

where p = (p1,p2,...,pn)".
Impose exactness for any linear pressure
field p = x"a + ¢ (which gives velocity
equal to —Ka):

v = 7A1’n/;rKCL

pi —po = (x; — 930)Ta-

As a result, T must satisfy

where C(i,:) = (x; — xo)" and
N(i,:) = Amn]
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Implementation Details for MsMFE

The mimetic finite difference method, Brezzi et al., 2005

Express fluxes v = (v1,v2,...,v,)" as: Family of Vi“d solutions:
T=—NKN' +T,,
v =—T(p — po), |E|
where p = (p1,p2,...,pn)". where T'5 is such that T is s.p.d.
Impose exactness for any linear pressure and T>,C = O.

field p = x"a + ¢ (which gives velocity

equal to —Ka)
—An]Ka

Pi —po = (; —930) a.

As a result, T must satisfy

T x x.

where C(4, )—(m — )" and
N(i,:) = Amn]

S|NTEF Applied Mathematics . . S 05/12/2008 < O 25/63



Implementation Details for MsMFE

The mimetic finite difference method, Brezzi et al., 2005

Express fluxes v = (v1,v2,...,v,)" as: Family of Vi“d solutions:
T=—NKN' +T,,
v =—T(p — po), |E|
where p = (p1,p2,...,pn)". where T'5 is such that T is s.p.d.
Impose exactness for any linear pressure and T>,C = O.

field p = x"a + ¢ (which gives velocity

Imposing continuity across
equal to —Ka) i y

edges/faces and conservation

—An!Ka yields a hybrid system:
Pi—m:(ﬂcz‘—ﬂco) a. B C D\ (v
_ c’ o o = RHS
As a result, T must satisfy (DT o o) (i)

Reduces to s.p.d. system for face
pressures .

where C(4, )—(m — )" and
N(i,:) = Amn]
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Treating Wells as Boundary Conditions
Discrete system still amenable to schur complement reduction

Discrete Pressure System

B 0 C D 0 v 0

o B, C, 0 D, —q. 0
ct cl o o o -p | = 0
D" 0 0 0 O ™ 0

0 D;[ 0 0 0 Dy _qw,tot

Well Model, Peaceman

—qf = —)\t(Skl)WIf(pEkl _pwk)a i=1,...,n

ng
k k
Qo — E q; -

=1
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Implementation Details for MsMFE

Mimetic: method applicable to general polyhedral cells

Standard method + skew grids = grid-orientation effects

Water—cut curves for two-point FYM Water—cut curves for mimetic FOM

K: homogeneous and isotropic,
symmetric well pattern
— symmteric flow

Streamlines with two-point method

SINTEF
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Implementation Details for MsMFE

Mimetic: the role of the inner product

There is freedom in choosing the inner product (T,), so that e.g.,
@ MFDM coincides with TPFA on Cartesian grids
@ MFDM coincides with MFEM on Cartesian grids

Positive definite system is guaranteed. Monotonicity properties are
similar as for MPFA.

Challenge:

Local adjustment of the inner product to reduce the condition
number (and appearance of cycles) on complex grids.
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Implementation Details for MsMFE

Automated generation of coarse grids

(Unique) grid flexibility:

Given a method that can solve local flow problems on the subgrid,
the MsMFE method can be formulated on any coarse grid in which
the coarse blocks consist of a connected collection of fine-grid cells
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Implementation Details for MsMFE

Automated generation of coarse grids

(Unique) grid flexibility:

Given a method that can solve local flow problems on the subgrid,
the MsMFE method can be formulated on any coarse grid in which
the coarse blocks consist of a connected collection of fine-grid cells
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Implementation Details for MsMFE

Coarse grid generation

Problems occur when a basis function tries to force flow through a flow
barrier

I

— A

\\\\\\\\

e

R S0P

problem

no problem

Can be detected automatically through the indicator

vij = Pij - (AK) b

If v;;(x) > C for some x € Tj, then split T; and generate basis functions
for the new faces

SINTEF
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Implementation Details for MsMFE

Coarse grid generation

Problems if there is a strong bi-directional flow over a coarse-grid
interface

fine grid multiscale

Can be detected automatically through the indicator

\/ v-nds|<</ |v-n|ds, cg/ |v-n|ds
M M Fis

%) ¥)

If so, split T; and generate basis functions for the new faces.
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Implementation Details for MsMFE

Coarse grid generation

Problems if there is a strong bi-directional flow over a coarse-grid
interface

fine grid multiscale

Can be detected automatically through the indicator

\/ v-nds|<</ |v-n|ds, cg/ |v-n|ds
M Fis Fis

%) ¥)

If so, split T; and generate basis functions for the new faces.
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Implementation Details for MsMFE

Simple guidelines for choosing good coarse grids

@ Minimize bidirectional flow over
interfaces:
e Avoid unnecessary irregularity
(Fe,7 and T38)
e Avoid single neighbors (T4)
e Ensure that there are faces
transverse to flow direction (75)

@ Blocks and faces should follow
geological layers (T3 and T3)

© Blocks should adapt to flow obstacles
whenever possible

@ For efficiency: minimize the number of
connections

@ Avoid having too many small blocks

Flow direction =————>

- T [\\\\
T EEEE ™
T T
T TN
N
1716 B T
™S =
\\ ™ T
4
A A 4]
] 1
U ][ SuE ][ L~
L |
N L
Flow direction ——>
T ™
i
T ™
_ T H T~
L1716 [ =
T~ LT
N L1 L4~
M = T
L e L
SN I
nul) 1113
Lt
{ ¢Z L ’]
™
L L
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Implementation Details for MsMFE

Example: adaption to flow obstacles

Non-uniform grid, hexahedral cells Non-uniform grid, general cells

SINTEF Applied Mathematics

General grid-cell

05/12/2008
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The Latest News About the MsMFE Method

Four new developments

Four new developments in the last year:

@ Extension of the MsMFE method to compressible three-phase
flow

@ A prototype implementation in FrontSim, applied to fractured
media

@ Extension of the MsMFE method to the Stokes-Brinkman
equations to model flow in vuggy and naturally-fractured
porous media

@ Combination of the MsMFE method and the flow-based
nonuniform coarsening method to give a very efficient solver

@ SINTEF Applied Mathematics 05/12/2008 < O + 34/63



MsMFE for Compressible Black-Oil Models
Fine-grid formulation

Semi-discrete pressure equation

pnipnfl
ct”T+V~ﬁﬁ—(” At KT =g, dt = KAV

Discretization using a mimetic method
’u,E:)\T'E(]?E—'TI'E)7 TE: ‘E|_1NEKENE+TE

N g: face normals, X g: vector from face to cell centroids,
T g chosen arbitrarily provided Tp X g = 0.

Hybrid system:

B C D u, 0
CT - VI—I P 0 2 - Ppn71 + q|,
D' 0 0 ™, 0
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MsMFE for Compressible Black-Oil Models

Coarse-grid formulation

v'Bw V'C,T WID/J|[ u 0
ey, -vy'w 1P 0 —p| = |Z"Psp}
J'Diw 0 0 n 0

W — velocity basis functions

® — pressure basis functions

Z — prolongation from blocks to cells

J — prolongation from block faces to cell faces

New feature: fine-scale pressure J

p/ ~Ip+®Dyu, D, =diag(\/\;)
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MsMFE for Compressible Black-Oil Models

Example 1: tracer transport in gas (Lunati&Jenny 2006)

10

— Reference
—— MsMFEM

p [Bar]
p [Bar]

— Reference
—— MsMFEM

L L H L 0
0 20 40

60 80 100 [ 20
L /100
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MsMFE for Compressible Black-Oil Models

Example 3: a model with five faults

g & & %

g & & %
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MsMFE Prototype Solver in FrontSim

Example: a dense system of fracture corridors

PemX MDARCY) (141 (RER)

’H%M vv‘v’Ar cer

Oilat (01 (REF)

800 x 800 80 x 80 upscaled

a0 _0A6)

@ SINTEF pplied Mathematics
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MsMFE Prototype Solver in FrontSim

Example: SPE 10 with fracture corridors

x-y permeability saturation, reference saturation, multiscal

T TR T
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MsMFE Prototype Solver in Fron

Example: SPE 10 with fracture corridors

—REF —Mus —REF — s
14000 100
12000
o5
10000
5 w0
a
<
& e00
7
o 400
[
]
e
2000
o3 T T T T T T T T T 1 0.00 — T T T T T T T T T 1
0300 4d0 &0 500 1055 1200 1403 1o 1800 U3 4B5 643 &80 tobo 175 1405 1605 1800
TIME DAYS TIME DAYS
field oil-production rate field water cut
—REF —Mus —REF — s
190 0z0
070
07 050
] i
L Loso
k3 ]
Zos0 T o40
H 5
E Eox
5 =
—ozs o
T i
53 Soo
H H
090 ID T 1 090 T T T T 1

T T T
200 400 600 800
DAY

T T Ty T
1000 1200 1400 1600 1800
TIME S

b 200 4to 600 edo
TIME DAY

T T T T T
1000 1200 1400 1600 1800
S

SINTEF

water cut in P1
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MsMFE for the Stokes—Brinkman Equations

Model equations: Darcy—Stokes vs Stokes—Brinkman

Standard approach:

Mesu scale

Porous region (Darcy): Field scale

pK~Yip +Vpp = f, V-ip=gq.

(

Free-flow region (Stokes):

~ - 7 ~ .
—uV-(Vis+Vig)+Vps = f, Vs =q i P
Caves vigs B *® &
. . . Tle-a® - @
Problem: requires interface conditions and S

explicit geometry

Stokes—Brinkman (following Popov et al.)
,qulﬁ—l—Vp—/fLAﬂ':f, V-iu=gq

Here: seamless transition from Darcy to Stokes (with p = ji)
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MsMFE for the Stokes—Brinkman Equations

Basis functions

Local flow problems discretized using Taylor-Hood elements
wi(_’), if £ € Q,,
pK My + Vi — idhi; =0, Vi = —w;(7), if7Fe€Qy,
0, otherwise,
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MsMFE for the Stokes—Brinkman Equations

Coarse-scale hybrid mixed system

AHY'WTBlwA-! ¢ D|[ wu 0
CT 0 0 _pc — qc
D' 0 0oL X 0
A - matrix with face areas
W — matrix with basis functions

Bé — fine-scale Darcy TH-discretization

Fine-scale flux reconstructed as u/ = Wuc
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MsMFE for the Stokes—Brinkman Equations

Example 1: Model 2 of the 10th SPE Comparative Solution Project

o LR
)

. o =
Tarbert (1-35 Upper Ness (36-85)
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MsMFE for the Stokes—Brinkman Equations

Example 1: Layer 20 of SPE10

FSSB MS SB 3x11 MS SB 6x22 MS SB12x44  MS SB 30x110
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MsMFE for the Stokes—Brinkman Equations

Example 1: Layer 60 of SPE10 (worst case with injector in low-permeable block)

MS SB 6x22 MS SB12x44  MS SB 30x110
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MsMFE for the Stokes—Brinkman Equations

Example 2: Vuggy reservoir (short correlation)

Fine-scale model consists of 200 x 200 cells
26 random vugs of sizes 1.8-10.4 m?

Permeability in vugs is 107 higher than in matrix

SINTEF Applied Mathematics . . & & 4 &
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MsMFE for the Stokes—Brinkman Equations

Example 3: Fractured reservoir (long correlation)

. E-ﬁ =

(=572

Fine-scale model consists of 200 x 200 cells
14 random fractures of varying length

Permeability in fractures is 107 higher than in matrix
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MsMFE for the Stokes—Brinkman Equations

Example 4: Vuggy and fractured reservoir (short and long correlation)

=i N
=M
., |' o

Sl
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MsMFE for the Stokes—Brinkman Equations

Example 4: Vuggy and fractured reservoir (short and long correlation)

FS

0 o | ==
=TS

:g%;;\‘u,,'.

Basis functions in y—direction Permeability and veloci
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Flow-Based Nonuniform Coarsening
Fast saturation solver

Task:

Given the ability to model velocity on geomodels and transport on
coarse grids: Find a suitable coarse grid that best resolves fluid
transport and minimizes loss of accuracy.

Idea (Aarnes & Efendiev):

Use flow velocities to make a nonuniform grid in which each cell
has approximately the same total flow
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Flow-Based Nonuniform Coarsening

Algorithm

@ Segment the domain according to In|v]
@ Combine small blocks

© Split blocks with too large flow

© Combine small blocks

SPE 10, Layer 37

Logarithm of permeability: Layer 37 in SPE10
y : - R TEI

Logarithm of velocity on geomodel
i - ca

-_-
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Flow-Based Nonuniform Coarsening

Algorithm (for Layer 68 of SPE 10)

Step 1: Segment In|v| into N level sets

Robust choice: N =10

Step 1: 1411 cells
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Flow-Based Nonuniform Coarsening

Algorithm (for Layer 68 of SPE 10)

Step 1: Segment In|v| into N level sets

Robust choice: N =10

Step 1: 1411 cells

Merge B and B’ if
ﬁ Jpnlv] ~

ﬁ [ Inv]

Step 2: 94 cells
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Flow-Based Nonuniform Coarsening

Algorithm (for Layer 68 of SPE 10)

Step 3: Refine blocks with too much flow ( [5 In|v|dz > C)

Build B’ inwards from 6B
Restart with B = B\ B’

‘ =¥
» Step 3: 249 cells
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Flow-Based Nonuniform Coarsening

Algorithm (for Layer 68 of SPE 10)

Step 3: Refine blocks with too much flow ([ In|v|dz > C)

Build B’ inwards from 6B
Restart with B = B\ B’

‘ =¥
» Step 3: 249 cells

Step 4: Combine small blocks with a neighbouring block

'-"'—._
Step 2 repeated
N
I'"af g" Step 4: 160 cells
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Flow-Based Nonuniform Coarsening

Example 1: Layer 68, SPE10, 5-spot well pattern

Saturation error for each of the 85 layers in the SPE10 model
T T T T

Geomodel:
60x220 = 13200

° N N * Layer B ° * Uniform:
WaleH:uTsvrorlmeach?ilneBS\aysvs:ntheSPEmm‘odel 15 >< 44 — 660
3 R AN Non-uniform:

619-734 blocks

Observations:
"Ly

o First 35 layers: * S %E = uniform grid adequate.

o Last 50 layers: B = uniform grid inadequate.

@ Non-uniform grid gives consistent results for all layers.
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Flow-Based Nonuniform Coarsening

Example 1: Layer 68, SPE10, 5-spot well pattern

Logarithm of velocity on geomodel

S, g

200 L e

Geomodel: 132

Logarithm of velocity on Cartesian coarse grid Logarithm of velocity on non-uniform coarse grid
- - =
] : ol | k
I= P S
Coarse grid: 660 cells Coarse grid: 649 cells
Logarithm of velocity on Cartesian coarse grid Logarithm of velocity on non-uniform coarse grid

¥

e, P
: i K

Coarse grid: 264 cells

y

&’

Coarse grid: 257 cells
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Flow-Based Nonuniform Coarsening

Example 2: real-field model

Water—cut curves

! Reference solution
00} | - - - 1648 blocks
-~ 891 blocks
08
o 469 blocks M
o7 236 blocks
osl| * 121 blocks *
05
04
03
02
01
Ot tnrttea s B
0 o1 02 03 04 05 06 07 08 085 1
Pore volume injected
Water-cut curves
! Reference solution
08} | - = ~1581 blocks
og| | = = 854 blocks
© 450 blocks
07 239 blocks
o6l | * 119blocks

0 o1 02 03 04 05 06 07 08 08 1
Pore volume injected

SINTEF 05/12/2008 « O + 58/63



Flow-Based Nonuniform Coarsening

Example 2: real-field model
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MsMFEM and Nonuniform Coarsening

A perfect companionship?

Both methods fast by themselves, but not optimal if they
communicate via fine grid.

@ Saturation piecewise constant on coarse saturation grid.

@ Saturation-solver only requires fine-grid fluxes over coarse-grid
interfaces.

— Compute coarse mappings as a preprocessing step

Coarse communication

Coarse Fine
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MsMFEM and Nonuniform Coarsening

Multiscale pressure system:

V'B;(Zs, )W C D u” —Dp7h
c’ 0 0| |-p"|= 0
D’ 0 0 A" v

Coarse-scale transport:

s"=s""L 4 AT, fI(ITV(v’]})If(s") + ITq+>

Reducing computational complexity

@ rewrite time-dependent block of matrix
NP
VU B(Zs, 1)W=> W B(Teps; "V,
k=1

where \(s] )WT B ;(Zeys? )W is time-independent

@ need only store ITV(’U?)I on coarse-grid interfaces
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MsMFEM and Nonuniform Coarsening

Example: Water-flooding optimization (45 000 cells, real-field model)

NPV (billion $)

~E—fine model ~E—fine model
~©~coarse model 2- fine eval ~&~coarse model 3- fine eval
~~coarse model 3- coarse eval

NPV (billion $)

~E—fine model
~&~coarse model 1- fine eval
~~coarse model 1- coarse eval

15 20 o 5 10 15 20
iteration

p: 4 X 9 x 2, S: 800 blocks

15 20 10
iteration

p: 4 X 9 X 2, S: 291 blocks

10
iteration

p: 4 X 9 X 2, S: 136 blocks
Simulation time (20 time-steps) using simple MATLAB implementation
on standard work-station:

@ 30 sec if updating fine system for every step

@ < 5 sec if using precomputed coarse mappings
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The GeoScale Project Portfolio

Research funded mainly by the Research Council of Norway

« Split fine / coarse scales
« Very fast

simulator « Near-well modeling

i)

(9]
Q
[
2
o “GeoScale” I:> Large-scale
3 technology simulation
(@]
L « Parallelization
: o « Multimillion
: s%pc%‘;gggr time-critical reservoir cells
« Optimal model reduction for
. tradeoff between time and
Slmple accuracy
Coarse Detailed

Geological representation
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