
Modeling of two-phase flow in fractured porous
media on unstructured non-uniform coarse grids

Jørg Espen Aarnes and Vera Louise Hauge

SINTEF ICT, Deptartment of Applied Mathematics

Applied Mathematics 1/17



Objective and model assumptions

Objective:

Develop an algorithm for constructing coarse grids capable of
resolving two-phase flow in fractured porous media accurately.

Model assumptions:

Statistically generated horizontal and vertical fractures with
length between 20–40% of length of shortest side of reservoir.

Velocity computed on a fine grid that resolves fractures.

Saturation computed on an unstructured coarse grid.

Homogeneous model with 100 fractures Heterogeneous model with 100 fractures  
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Non-uniform coarsening algorithm

1 Compute the initial velocity field v on the fine grid and define

g(E) =
1

|E|

∫
E

log |v(x)| dx−min(log |v|) + 1, E ⊂ Ω.

2 Assign an integer from 1 to 10 to each cell c in the fine grid by

n(c) = ceil
[
10(g(c)−min

c
g)/(max

c
g −min

c
g)

]
.

3 Initial blocks = connected groups of cells with the same n(c).
4 Merge each block B with less volume than Vmin with

B′ = arg min
B′′∈neighbors

|g(B)− g(B′′)|.

5 Refine each block B with |B|g(B) > Gmax as follows
1 Pick an arbitrary cell c0 ⊂ B and locate the cell ci ⊂ B with

center furthest away from the center of c0.
2 Define B′ = ci and progressively enlarge B′ by adding cells

from B adjacent to cells in B′ until |B′|g(B′) > Gmax.
3 Define B = B\B′ and refine B further if |B|g(B) > Gmax.

6 Repeat step 2 and terminate.
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Non-uniform coarsening algorithm
Coarse grid: Initial step, 152 cells Coarse grid: Step 2, 47 cells

Coarse grid: Step 3, 95 cells Coarse grid: Step 4, 69 cells

log |v| on fine grid (2500 cells) log |v| on coarse grid (69 cells)
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Explicit Fracture-Matrix Separation (EFMS)

1 2

2
1

3 4

2
1

Initial model: 100 x 100 grid with 50 fractures.

Step 1: Introduce an initial coarse grid.

Step 2: Separate fractures and matrix.

Step 3: Split non-connected blocks.
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Operator splitting of saturation equation

Water saturation equation for a water-oil system:

φ
∂S

∂t
+∇ · [fw (v + λo∇pcow + λog(ρo − ρw)∇z)] = qw,

Operator splitting of the water saturation equation

φ
∂S

∂t
+∇ · (fwv + fwλog(ρo − ρw)∇z) = qw,

φ
∂S

∂t
+∇ ·

(
fwλo

∂pcow

dS
∇S

)
= 0.
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Numerical discretization of advection equation

Denote the non-degenerate fine grid interfaces by γij = ∂Ti ∩ ∂Tj .

S
n+ 1

2
m = Sn

m +
∆t∫

Bm
φ dx

∫
Bm

qw dx−
∑

γij⊂∂Bm

Vij(S
n+ 1

2 )−Gij(S
n+ 1

2 )

.

Here

Vij(S) = max{vijfw(S|Ti), − vijfw(S|Tj )},

Gij(S) = g(ρo − ρw)|γij |
λw(S+)λo(S

−)

λw(S+) + λo(S−)
∇z · nij ,

where vij = flux from Ti to Tj , nij = unit normal on γij from Ti

to Tj , and S+ and S− is the upstream saturation with respect to
the gravity driven flow of oil and water, respectively.
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Numerical example: Pure advective flow

Coarsening algorithm # blocks L2 water-cut error

Non-uniform coarsening 255 0.0240
EFMS 315 0.1428
Cartesian coarse grid 330 0.1838

Saturation profiles at 0.48 PVI

Reference solution NUC solution

EFMS solution Cartesian solution

Water-cut curves
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Test-case I: No capillary diffusion

100 high permeable fractures and 20 low permeable fractures.
Permeability of high permeable fractures: > matrix permeability.
Permeability of low permeable fractures: � matrix permeability.
25 simulations with different fracture distributions.

Homogeneous model Heterogeneous model
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Numerical discretization of diffusion equation

Diffusion equation:

φ
∂S

∂t
= ∇ · d(S)∇S,

where d(S) = −fwλo
∂pcow

dS is a non-negative function.

Time discretization: Semi-implicit backward Euler

φSn+1 = φSn+1/2 +4t∇ · d(Sn+1/2)∇Sn+1.

Spatial discretization: ???

How should 4t∇ · d(Sn+1/2)∇Sn+1 be discretized on coarse grids
with complex block geometries and strong subgrid heterogeneity?
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Spatial discretization of diffusion equation

Option 1: Fine grid discretization

(Φ +4tD) Sn+1 = ΦSn+1/2,

where Φ = diag(φ) and D = [dij(S)] stems from a fine grid
discretization of the semi-elliptic operator L = ∇ · d∇.

Option 2: Coarse grid discretization by Galerkin projection

(Φc +4tDc) Sn+1
c = ΦcS

n+1/2
c ,

where Φc = RtΦR and Dc = RtDR. Here R = [rij ] where

rij =

{
1 if cell i is contained in block j,
0 otherwise.

Hence, R maps coarse grid saturations onto the fine grid.
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Spatial discretization of diffusion equation

Orthogonal projection property

If Sn+1 solves the fine grid system with Sn+1/2 = RS
n+1/2
c , then

‖R(Sn+1
c − Sn+1/2

c )‖ = arg min
Sc

‖RSc − Sn+1‖,

where ‖S‖ = (S, (Φ +4tD)S)1/2, i.e., Sn+1
c is the optimal coarse

grid approximation to Sn+1 in the norm ‖ · ‖.

The fine grid discretization gives too much diffusion!

Gradients of the blockwise constant saturation is computed at the
fine grid level: Options 1 and 2 overestimate diffusion.
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Spatial discretization of diffusion equation

The overestimation factor scales with the ratio of the size of the
coarse grid blocks relative to the size of the fine grid cells.

On average the diffusion should be damped by a factor (Nb/Nc)
1/d,

where Nb = number of blocks and Nc = number of cells.

Scaled Galerkin projection[
Φc +4t

(
Nb

Nc

)1/d

Dc

]
Sn+1

c = ΦcS
n+1/2
c .
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Test-case II: With capillary diffusion

Homogeneous model Heterogeneous model
fine grid G. proj. scl. proj. fine grid G. proj. scl. proj.

EFMS 0.071 0.077 0.028 0.091 0.107 0.051
NUC 0.047 0.055 0.079 0.063 0.109 0.033
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Test-case II: With capillary diffusion
Homogeneous model with 100 high permeable fractures: Saturation profiles at 0.2 PVI

Fracture model Reference solution

NUC: fine grid diffusion EFMS: fine grid diffusion

NUC: scaled G. projection EFMS: scaled G. projection
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Test-case II: With capillary diffusion
Heterogeneous model with 100 high permeable fractures: Saturation profiles at 0.2 PVI

Fracture model Reference solution

NUC: fine grid diffusion EFMS: fine grid diffusion

NUC: scaled G. projection EFMS: scaled G. projection
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Summary

For flows without capillary diffusion we consistently obtain
significantly more accurate solutions on non-uniform coarse
grids than on grids with explicit fracture-matrix separation.

For flows with relatively strong capillary diffusion, the
coarsening algorithms give comparable results for
homogeneous fracture models, but non-uniform coarsening
gives best results for heterogeneous fracture models.

The scaled Galerkin projection generally models diffusion well
on complex coarse grids, but more rigorous ways of damping
the fine scale diffusion will be studied in further research.
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