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Task: Given ability to model
velocity on geomodels, and
transport on coarse grids:

Find a suitable coarse grid
that resolves flow patterns
and minimize accuracy loss.
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Motivation

Today:

Geomodels too large and complex for flow simulation:
Upscaling performed to obtain

Simulation grid(s).

Effective parameters and pseudofunctions.

Reservoir simulation workflow

Geomodel

−→
Upscaling

−→
Flow simulation

−→
Management

Tomorrow:

Earth Model shared between geologists and reservoir engineers —
Simulators take Earth Model as input, users specify grid-resolution
to fit available computer resources and project requirements.
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Objectives

Main objective:

Develop a generic grid coarsening algorithm for reservoir simulation
that resolves dominating flow patterns.

– generic: one implementation applicable to all types of grids.

– resolve flow patterns: separate high flow and low flow regions.

Secondary objective:

Reduce the need for pseudofunctions.
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Simulation model and solution strategy

Simulation model
Pressure equation and component mass-balance equations

Primary variables:

Darcy velocity v,

Liquid pressure po,

Saturations sj , j=aqueous, liquid, vapor.

Iterative sequential solution strategy:

vν+1 = v(sj,ν),
po,ν+1 = po(sj,ν),

sj,ν+1 = sj(po,ν+1, vν+1).

(Fully implicit with fixed point rather than Newton iteration).

Advantages with sequential solution strategy:

Grid for pressure and mass balance equations may be different.

Multiscale methods may be used to solve pressure equation.

Pressure eq. allows larger time-steps than mass balance eqs.
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Discretization

Pressure equation:

Solution grid: Geomodel — no effective parameters.

Discretization: Multiscale mixed / mimetic method

Coarse grid:
obtained by
up-gridding in
index space

Mass balance equations:

Solution grid: Non-uniform coarse grid.

Discretization: Two-scale upstream weighted FV method
— integrals evaluated on geomodel.

Pseudofunctions: No.
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Generation of coarse grid for mass balance equations

Coarsening algorithm

1 Separate regions with different magnitude of flow.

2 Combine small blocks with a neighboring block.

3 Refine blocks with too much flow.

4 Repeat step 2.

Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern.
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Grid generation procedure
Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Separate: Define g = ln |v| and D = (max(g)−min(g))/10.

Region i = {c : min(g) + (i− 1)D < g(c) < min(g) + iD}.

Initial grid:
connected subregions
— 733 blocks

Merge: If |B| < c, merge B with a neighboring block B′ with

1

|B|

∫
B

ln |v|dx ≈ 1

|B′|

∫
B′

ln |v| dx

Step 2: 203 blocks
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Grid generation procedure
Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Refine: If criteria —
∫
B ln |v|dx < C — is violated, do

Start at ∂B and build new blocks B′ that meet criteria.

Define B = B\B′ and progress inwards until B meets criteria.

Step3: 914 blocks

Cleanup: Merge small blocks with adjacent block.

Final grid: 690 blocks
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Example: Log of velocity magnitude on different grids
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Layer 68 SPE10, 5 spot well pattern

Geomodel: 13200 cells

Coarse grid: 660 cells Coarse grid: 649 cells

Coarse grid: 264 cells Coarse grid: 257 cells
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Numerical examples
Performance studies

Experimental setup:

Model: Incompressible two-phase flow (oil and water).

Initial state: Completely oil-saturated.

Relative permeability: krj = s2
j , 0 ≤ sj ≤ 1.

Viscosity ratio: µo/µw = 10.

Error measures: (Time measured in PVI)

Saturation error: e(S) =
∫ 1
0

‖S(·,t)−Sref(·,t)‖L1(Ω)

‖Sref(·,t)‖L1(Ω)
dt.

Water-cut error: e(w) = ‖w − wref‖L2([0,1])/‖wref‖L2([0,1]).

Applied Mathematics 11/19



Example 1: Geomodel = individual layers from SPE10
5-spot well pattern, upscaling factor ∼ 20
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Non−uniform coarsening
Uniform coarsening

Non−uniform coarsening
Uniform coarsening Geomodel:

60× 220× 1

Uniform grid:
15× 44× 1

Non-uni. grid:
619–734 blocks

Observations:

First 35 layers smooth ⇒ Uniform grid adequate.

Last 50 layers fluvial ⇒ Uniform grid inadequate.

Non-uniform grid gives consistent results for all layers.
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Example 2: Geomodel = stack of five layers from SPE10
5-spot well pattern, upscaling factor ∼ 100
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Non−uniform coarsening
Uniform coarsening

Non−uniform coarsening
Uniform coarsening

Geomodel:
60× 220× 5

Uniform grid:
15× 44× 1

Non-uniform grid:
655–714 blocks

Observations:

Uniform grid inadequate, also for stacks from layers 1–35
— lognormal mean of permeability in layers varies significantly.

Non-uniform grid gives consistent results for all stacks.
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Example 3: Geomodel = unstructured corner-point grid
20 realizations from lognormal distribution, Q-of-5-spot well pattern, upsc. factor ∼ 25
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Non−uniform coarsening
Uniform coarsening

Non−uniform coarsening
Uniform coarsening

⇐ 2 realizations.
Geomodel:
15206 cells

Uniform grid:
838 blocks

Non-uni. grid:
647–704 blocks

Observations:

Coarsening algorithm applicable to unstructured grids
— accuracy consistent with observations for SPE10 models.

Results obtained with uniform grid (in index space) inaccurate.
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Example 4: Geomodel = four bottom layers from SPE10
Robustness with respect to degree of coarsening, 5-spot well pattern

Number of cells in grid (upscaling factor 4–400)

Uniform grid 30x110x4 20x55x4 15x44x2 10x22x2 6x22x1
13200 4400 1320 440 132

Non-U. grid 7516 3251 1333 419 150
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Non−uniform coarsening
Uniform coarsening

Observations:

Non-uniform grid gives better accuracy than uniform grid.

Water-cut error almost grid-independent for non-uniform grid.
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Example 5: Geomodel = four bottom layers from SPE10
Robustness with respect to well configuration, upscaling factor ∼ 40
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Uniform coarsening Uniform grid:

15× 44× 2

Non-uniform grid
∼ 1320 blocks

Non-uniform grid gives better accuracy than uniform grid
— substantial difference in water-cut error for all cases.
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Example 6: Geomodel = four bottom layers from SPE10
Dependency on initial flow conditions, upscaling factor ∼ 40

Grid generated
with respective
well patterns.

Grid generated
with pattern C.
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Observation:
Grid resolves high-permeable regions with good connectivity
— Grid need not be regenerated if well pattern changes.
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Example 7: Geomodel = four bottom layers from SPE10
Robustness with respect changing well positions and well rates, upscaling factor ∼ 40
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Non−uniform coarsening: e(S)=0.1711
Uniform coarsening: e(S)=0.2526
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Reference solution
Non−uniform coarsening: e(w)=0.0123
Uniform coarsening: e(w)=0.0993
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Reference solution
Non−uniform coarsening: e(w)=0.0273
Uniform coarsening: e(w)=0.0902

5-spot, random prod. rates well patterns: 4 cycles A–E
grid generated with equal rates grid generated with pattern C

Observations:

NU water-cut tracks reference curve closely: 1%–3% error.

Uniform grid gives ∼ 10% water-cut error.
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Conclusions

Flashback:

A generic semi-automated algorithm for generating coarse
grids that resolve flow patterns has been presented.

Solutions are significantly more accurate than solutions
obtained on uniform coarse grids with similar number of cells.

Water-cut error: 1%–3% — pseudofunctions superfluous.

Grid need not be regenerated when flow conditions change!

Potential application:

User-specified grid-resolution to fit available computer resources.

Relation to other methods:

Belongs to family of flow-based gridsa: designed for flow scenarios
where heterogeneity, rather than gravity, dominates flow patterns.

aGarcia, Journel, Aziz (1990,1992), Durlofsky, Jones, Milliken (1994,1997)
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