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Logarithm of velocity on geomodel

Task: Given ability to model
velocity on geomodels, and
transport on coarse grids:

Find a suitable coarse grid
that resolves flow patterns
and minimize accuracy loss.
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Today:
Geomodels too large and complex for flow simulation:
Upscaling performed to obtain

e Simulation grid(s).

o Effective parameters and pseudofunctions.

Reservoir simulation workflow

g

Upscaling Flow simulation Management

Geomodel

Tomorrow:

Earth Model shared between geologists and reservoir engineers —
Simulators take Earth Model as input, users specify grid-resolution
to fit available computer resources and project requirements.
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Main objective:
Develop a generic grid coarsening algorithm for reservoir simulation
that resolves dominating flow patterns.

— generic: one implementation applicable to all types of grids.

— resolve flow patterns: separate high flow and low flow regions.

Secondary objective:

Reduce the need for pseudofunctions.
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Simulation model and solution strategy

Simulation model
Pressure equation and component mass-balance equations

e Darcy velocity v,
Primary variables: @ Liquid pressure p,,

e Saturations s;, j=aqueous, liquid, vapor.
Iterative sequential solution strategy:

Vy+1 = 'U(SJ}V)7

Pov+1 = P (Sj 1/) Sjv+l = Sj(p07V+1,UV+1).
0711 o o I )

(Fully implicit with fixed point rather than Newton iteration).
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Simulation model and solution strategy

Simulation model
Pressure equation and component mass-balance equations
e Darcy velocity v,
Primary variables: @ Liquid pressure p,,
e Saturations s;, j=aqueous, liquid, vapor.
Iterative sequential solution strategy:
pf:i _ ZEZ;B’)’ Sjv+1 = Sj(Pop+1, Vu+1)-
(Fully implicit with fixed point rather than Newton iteration).
Advantages with sequential solution strategy:
@ Grid for pressure and mass balance equations may be different.
@ Multiscale methods may be used to solve pressure equation.

@ Pressure eq. allows larger time-steps than mass balance egs.
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Pressure equation:
@ Solution grid: Geomodel — no effective parameters.

e Discretization: Multiscale mixed / mimetic method

Coarse grid: N N ‘Q

obtained by ) SE R
up-gridding in = .

index space (S5 W S

Mass balance equations:
@ Solution grid: Non-uniform coarse grid.

o Discretization: Two-scale upstream weighted FV method
— integrals evaluated on geomodel.

@ Pseudofunctions: No.
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Generation of coarse grid for mass balance equations

Coarsening algorithm
@ Separate regions with different magnitude of flow.
@ Combine small blocks with a neighboring block.
© Refine blocks with too much flow.
@ Repeat step 2.

Logarith of permeabilty Logarithm of velocity on geomodel
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Coarse grid: Step 2
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Grid generation procedure

Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Separate: Define g = In|v| and D = (max(g) — min(g))/10.

Region i = {c: min(g) + (i — 1)D < g(c) < min(g) +iD}.

Coarse grid: Initial step
- .

Initial grid:
connected subregions
— 733 blocks
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Grid generation procedure

Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Separate: Define g = In|v| and D = (max(g) — min(g))/10.
Region i = {c: min(g) + (i — 1)D < g(c) < min(g) +iD}.

Initial grid:
connected subregions
— 733 blocks

Merge: If |B| < ¢, merge B with a neighboring block B’ with

In|v|dx ~ / In |v| dx
!BI/ ||

se grid: Step 2

7 —_— ," - =
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i waz== % Step 2:
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Grid generation procedure

Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Refine: If criteria — [}, In |v|dz < C' — is violated, do
@ Start at OB and build new blocks B’ that meet criteria.

e Define B = B\ B’ and progress inwards until B meets criteria.

Coarse grid: Step 3

Step3: 914 blocks
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Grid generation procedure

Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Refine: If criteria — [}, In |v|dz < C' — is violated, do
@ Start at OB and build new blocks B’ that meet criteria.

e Define B = B\ B’ and progress inwards until B meets criteria.

Coarse grid: Step 3

Step3: 914 blocks

Cleanup: Merge small blocks with adjacent block.

Coarse grid: Final step
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Example: Log of velocity magnitude on different grids

Logarithm of velocity on geomodel

Logarithm of velocity on coarse grid
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Logarithm of velocity on Cartesian coarse grid
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Layer 68 SPE10, 5 spot well pattern

Logarlthm of permeablhty Layer 68 Logarithm of velocny on geomodel

G-ec-.)mdel 13200 cells

Logarithm of velocity on Cartesian coarse grid Logarithm of velocity on non-uniform coarse grid
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Coarse grid: 660 cells Coarse grid: 649 cells

Logarithm of velocity on Cartesian coarse grid Logarithm of velocity on non-uniform coarse grid
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Coarse grid: 264 cells Coarse grid: 257 cells
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Numerical examples
Performance studies

Experimental setup:

Model: Incompressible two-phase flow (oil and water).
Initial state: Completely oil-saturated.

Relative permeability: k,; = 52

i 0<s; <1

Viscosity ratio: 1/, = 10.

Error measures: (Time measured in PVI)

1 ”S('vt)fsref(’at)”LI(Q)

Saturation error:  ¢(S) = [, e dt.

Water-cut error:  e(w) = [[w — wref| L2([0,17)/ |wref | £2([0,1))
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Example 1. Geomodel = individual layers from SPE10

5-spot well pattern, upscaling factor ~ 20

Saturation error for each of the 85 layers in the SPE10 model
T

—— Non-uniform coarsening|
0.4 - - Uniform coarsening

£ W
Layer

Water—cut error for each of the 85 layers in the SPE10 model
T T T T

Observations:

Geomodel:
60 x 220 x 1

Uniform  grid:
15x44 x1

Non-uni. grid:
619-734 blocks

@ First 35 layers smooth = Uniform grid adequate.

@ Last 50 layers fluvial = Uniform grid inadequate.

@ Non-uniform grid gives consistent results for all layers.
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Example 2: Geomodel = stack of five layers from SPE10

5-spot well pattern, upscaling factor ~ 100

Saturation error for each of the 17 stacks of five conseculive layers in the SPE10 model
T T T T T T
— Non-uniform coarsening|
N - - - Uniform coarsening

e(S)

= Uniform grid:
Water—cut error for each of the 17 stacks of five consecutive layers in the SPE10 model 1 5 X 44 X 1
T T T T T

T
— Non-uniform coarsening|
ol - - - Uniform coarsening

N : Non-uniform grid:
il w | 655-714 blocks

Observations:

e(w)
T
L

@ Uniform grid inadequate, also for stacks from layers 1-35
— lognormal mean of permeability in layers varies significantly.

@ Non-uniform grid gives consistent results for all stacks.
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Example 3: Geomodel = unstructured corner-point grid

20 realizations from lognormal distribution, Q-of-5-spot well pattern, upsc. factor ~ 25

< 2 realizations.
Geomodel:
15206 cells

Water—cut error for 20 stochastic pormeailty realizations.

Uniform grid:
| 838 blocks

vor forp, =104,

Non-uni. grid:
647-704 blocks

Water—cut en

Observations:
@ Coarsening algorithm applicable to unstructured grids
— accuracy consistent with observations for SPE10 models.

@ Results obtained with uniform grid (in index space) inaccurate.
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Robustness with respect to degree of coarsening, 5-spot well pattern

Example 4. Geomodel = four bottom layers from SPE10

Number of cells in grid (upscaling factor 4-400)
Uniform grid | 30x110x4 | 20x55x4 | 15x44x2 | 10x22x2 | 6x22x1
13200 4400 1320 440 132
Non-U. grid 7516 3251 1333 419 150
|

0 0
30x110x4 20x55x4 15x44x2 10x22x2 6x22x1 30x110x4 20x55x4 15x44x2 10x22x2 6x22x1

Observations:
@ Non-uniform grid gives better accuracy than uniform grid.

@ Water-cut error almost grid-independent for non-uniform grid.
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Example 5: Geomodel = four bottom layers from SPE10

Robustness with respect to well configuration, upscaling factor ~ 40

o = Injector

® = Producer

Wellpatterns

Average saturatior

Uniform grid:
15 x 44 x 2

Non-uniform grid
~ 1320 blocks

o o
A3 B3 O3 D7) E(1397) A3 (s Cae) D) E(139)

@ Non-uniform grid gives better accuracy than uniform grid
— substantial difference in water-cut error for all cases.
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Example 6: Geomodel = four bottom layers from SPE10

Dependency on initial flow conditions, upscaling factor ~ 40

Average saturation error Water—cut error

Grid generated
with respective
well patterns.

o o
A(33)  BUIE)  o(sde D7) E(137) AU3®  BUss) (s D) E(137)

Average saturation error Water-cut error

oss I 1 con-uniform coarsening Il \on-uriform coarsening
Il Uriform coarsening I Uriform coarsening

Grid generated
with pattern C

0 0
AGI)  BoS  cosm Do EQS) AGs)  BaIm  cos) Do EGIT)

Observation:
Grid resolves high-permeable regions with good connectivity
— Grid need not be regenerated if well pattern changes.
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Example 7: Geomodel = four bottom layers from SPE10

Robustness with respect changing well positions and well rates, upscaling factor ~ 40

Water-cuts for case with changing well-rates Water—cuts for case with changing well-configurations

0.9 - - - - - - - - 1

08l 09

07 08
07

0.6
06

05
05

04
04

03
03

02 02 i

| Reference solution Reference solution
01f /|~ = = Non-uniform coarsening: e(w)=0.0123 0.1 ~ ~ ~ Non-uniform coarsening: e(w)=0.0273
) ) ! | — — Uniform coarsening: e(w)=0.0993 ~ — Uniform coarsening: e(w)=0.0902
% 01 02 o0s 04 05 06 07 08 08 1 % . . 3 04 05 06 07 08 09 1
PVI PVI
5-spot, random prod. rates well patterns: 4 cycles A-E
grid generated with equal rates grid generated with pattern C
Observations:

@ NU water-cut tracks reference curve closely: 1%—3% error.

@ Uniform grid gives ~ 10% water-cut error.
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Conclusions

Flashback:

@ A generic semi-automated algorithm for generating coarse
grids that resolve flow patterns has been presented.

@ Solutions are significantly more accurate than solutions
obtained on uniform coarse grids with similar number of cells.

e Water-cut error: 1%-3% — pseudofunctions superfluous.

@ Grid need not be regenerated when flow conditions change!

v

Potential application:
User-specified grid-resolution to fit available computer resources.

v

Relation to other methods:

Belongs to family of flow-based grids?: designed for flow scenarios
where heterogeneity, rather than gravity, dominates flow patterns.

“Garcia, Journel, Aziz (1990,1992), Durlofsky, Jones, Milliken (1994,1997)

v
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