Generic framework for taking geological models as

input for reservoir simulation
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Today:
Geomodels too large and complex for flow simulation:
Upscaling performed to obtain

e Simulation grid(s).

o Effective parameters and pseudofunctions.

Reservoir simulation workflow

g

Upscaling Flow simulation Management

Geomodel

Tomorrow:

Earth Model shared between geologists and reservoir engineers —
Simulators take Earth Model as input, users specify grid-resolution
to fit available computer resources and project requirements.
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Objective and implication

Main objective:
Build a generic framework for reservoir modeling and simulation
capable of taking geomodels as input.

— generic: one implementation applicable to all types of models.

4

Value: Improved modeling and simulation workflows.
@ Geologists may perform simulations to validate geomodel.

@ Reservoir engineers gain understanding of geomodeling.

o Facilitate use of geomodels in reservoir management.
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Simulation model and solution strategy
Three-phase black-oil model

Equations: Primary variables:

@ Pressure equation @ Darcy velocity v

Ctacﬁo +V-v+32,¢vj-Vp, =q e Liquid pressure p,

@ Mass balance equation @ Phase saturations s,
for each component aqueous, liquid, vapor.

Solution strategy: Iterative sequential

Vp+1 = U(Sj,l/)v

Do+l = DPo(sjv) Sjw+1 = Si(Doy+1, Vut1)-
o,V — , ,

(Fully implicit with fixed point rather than Newton iteration).
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Simulation model and solution strategy
Three-phase black-oil model

Equations: Primary variables:

@ Pressure equation @ Darcy velocity v

Ctacﬁo +V-v+32,¢vj-Vp, =q e Liquid pressure p,
@ Mass balance equation @ Phase saturations s,
for each component aqueous, liquid, vapor.
Solution strategy: Iterative sequential
Up+1 = U(Sj,z/)v Sipi1 = 8'(p 41,0 +1)
N — o,v v .
Pov+l = po(sj,u)7 J J )

(Fully implicit with fixed point rather than Newton iteration).
Advantages with sequential solution strategy:
@ Grid for pressure and mass balance equations may be different.
@ Multiscale methods may be used to solve pressure equation.

@ Pressure eq. allows larger time-steps than mass balance egs.
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Pressure equation:
@ Solution grid: Geomodel — no effective parameters.

e Discretization: Multiscale mixed / mimetic method

Coarse grid: N N ‘Q

obtained by ) SE R
up-gridding in = .

index space (S5 W S

Mass balance equations:
@ Solution grid: Non-uniform coarse grid.

o Discretization: Two-scale upstream weighted FV method
— integrals evaluated on geomodel.

@ Pseudofunctions: No.
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Multiscale mixed /mimetic method

— same implementation for all types of grids

Multiscale mixed/mimetic method (4M)
Generic two-scale approach to discretizing the pressure equation:

@ Mixed FEM formulation on coarse grid.

@ Flow patterns resolved on geomodel with mimetic FDM.

SINTEF Applied Mathematics =] 6/35



Multiscale mixed /mimetic method

Flow based upscaling versus multiscale method

Standard upscaling:
rl

i [+5 i
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Multiscale mixed /mimetic method

Flow based upscaling versus multiscale method

Standard upscaling:
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Coarse grid blocks:
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Multiscale mixed /mimetic method

Flow based upscaling versus multiscale method

Standard upscaling:
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Multiscale mixed /mimetic method

Flow based upscaling versus multiscale method

Standard upscaling:
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Multiscale mixed /mimetic method

Flow based upscaling versus multiscale method

Standard upscaling:
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Multiscale mixed/mimetic method

Flow based upscaling versus multiscale method

Standard upscaling:
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Multiscale mixed /mimetic method

Flow based upscaling versus multiscale method

Standard upscaling: Multiscale method (4M):
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Multiscale mixed /mimetic method

Flow based upscaling versus multiscale method

Standard upscaling: Multiscale method (4M):
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Multiscale mixed /mimetic m

Flow based upscaling versus multiscale method

Standard upscaling:
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Multiscale mixed /mimetic m

Flow based upscaling versus multiscale method

Standard upscaling:
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Multiscale mixed /mimetic method

Hybrid formulation of pressure equation: No-flow boundary conditions

Discrete hybrid formulation: (u,v), = [, w-vdx

Find v € V, p € U, ® € I such that for all blocks T},, we have

A0, u)m — (0, V - u) + Jor, mu-nds = (wgVD,u)m,
(%2, Dm + (V- 0,0 + (6505 - Vool = (@, Dm
faTm/w-nds = 0.

forallueV,l €U and pu €Tl

Solution spaces and variables: 7 = {7}, }

V C HI(T), U ="Py(T), N = Po({0T,, N OT},.}).

v = velocity, p = block pressures,

m = interface pressures.

v
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Multiscale mixed /mimetic method
Coarse grid

Each coarse grid block is a connected set of cells from geomodel.

Example: Coarse grid obtained with uniform coarsening in index space.

Grid adaptivity at well locations: J

One block assigned to each cell in geomodel with well perforation.
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Multiscale mixed /mimetic method

Basis functions for modeling the velocity field

Definition of approximation space for velocity:

The approximation space V is spanned by basis functions ¢, that
are designed to embody the impact of fine-scale structures.

Definition of basis functions:
For each pair of adjacent blocks 7}, and T;,, define ¢ by

= —KVuin Ty, UT,, Vo= Wy in Ty,
Y-n=0ond(T,UT,), N

—w, inT,,

Split : @i =lr.,  Vh = —|n,.

Basis functions time-independent if w,, is time-independent.
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Multiscale mixed /mimetic method

Choice of weight functions

Role of weight functions

Let (wpm,1)m = 1 and let v%, be coarse-scale coefficients.
v=) Ut = (Vo0)ln, = wm Y v,
m,i 7

— Wy, gives distribution of V - v among cells in geomodel.

Choice of weight functions

dt

@ Use adaptive criteria to decide when to redefine w;,.

0
Vv~ pO+chvj-Vpo
J

e Use w,, = ¢ (¢; ~ ¢ when saturation is smooth).

— Basis functions computed once, or updated infrequently.
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Multiscale mixed /mimetic

Workflow
At initial time
Detect all adjacent blocks Compute 9 for each domain

/
== =

For each time-step:
@ Assemble and solve coarse grid system.
@ Recover fine grid velocity.

@ Solve mass balance equations.

SINTEF
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Multiscale mixed /mimetic method

Subgrid discretization: Mimetic finite difference method (FDM)

Velocity basis functions computed using mimetic FDM

Mixed FEM for which the inner product (u, ov) is replaced with an
approximate explicit form (u,v € HY and o SPD),
— no integration, no reference elements, no Piola mappings.

May also be interpreted as a multipoint finite volume method.

Properties:
@ Exact for linear pressure.
@ Same implementation applies to all grids.

@ Mimetic inner product needed to evaluate terms in multiscale
formulation, e.g., (1, A\"14?,) and (wgV D, ¥, ;).
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Multiscale mixed /mimetic method

Mimetic finite difference method vs. Two-point finite volume method

Two-point FD method is “generic”, but ...

Example: Two-point method + skewed grids
TT I I T T A T T = grid orientation effects.
T S S O

TTETTLAL AR A ARV Watercut crvesfor Two-point method Watercut cuvesfor et method

T T T O

T VU R RE T

I L O A W R

Homogeneous+isotropic,
symmetric well pattern
— equal water-cut.

Two-point FV method
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Multiscale mixed /mimetic method
Well modeling

Grid block for cells with a well
@ correct well-block pressure

@ no near well upscaling E\E\_

@ free choice of well model.

Alternative well models

@ Peaceman model:

(perforation = _Wblock(pblock - pperforation)-
Calculation of well-index grid dependent.

@ Exploit pressures on grid interfaces:

(perforation = — Zl Wracei (pfacei - pperforation)-

Generic calculation of Wiee;.
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Multiscale mixed /mimetic method

Well modeling: Individual layers from SPE10 (Christie and Blunt, 2001)

5-spot: 1 rate constr. injector, 4 pressure constr. producers
Well model: Interface pressures employed.

Producer A Producer B
Distribution of
)V\, N production rates
"
Layer Layer — Reference
Producer C Producer D (60 X 220)
- ! M - — Multiscale
0002 o002 (10 >< 22)
R N
e Bottom-hole pressure at injection well
6 T T T T T T T T
5 .
4= -
3 .
s _
. . N . | I
o 10 20 30 40 50 B0 0 B0
Layer
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Multiscale mixed /mimetic method

Layer 36 from SPE10 model 2 (Christie and Blunt, 2001).

Example: Layer 36 from SPE10 (Christie and Blunt, 2001).

Pressure field computed with 4M

Pressure field computed with mimetic FDM

Primary features
@ Coarse pressure solution, subgrid resolution at well locations.

e Coarse velocity solution with subgrid resolution everywhere.

o 17/35
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Multiscale mixed /mimetic method

Application 1: Fast reservoir simulation on geomodels

Model: SPE10 model 2, 1.1 M cells, 1 injector, 4 producers. J

Water-cut curves at producers A-D

Producer A Producer B

Coarse grid:
5x11 x 17
— Reference
— 4M

o
>

Watercut
Watercut

o
=

Reference 02 Reference
. MsMFEM MsMFEM
—_— U psca | | ng —|— " Rested Gridding " Nested Gridding
. [ 500 1000 1500 2000 [ 500 1000 1500 2000
Ti d: Ti (d
downscaling m e i oy
Producer C Producer D
1 1
0.8 0.8
H -
4M+-streamlines: 5. 508
s s
. £ g
~ 2 minutes on = oe Z o4

02 Reference 02 Reference
es top MsMFEM MsMFEM
. — Nested Gridding — Nested Gridding
0 500 1000 1500 2000 0 500 1000 1500 2000
Time (days) Time (days)

Applied Mathematics =] 18/35



Multiscale mixed /mimetic method

Application 2: Near-well modeling / improved well-model

Krogstad and Durlofsky, 2007:

Fine grid to annulus,
block for each well segment
@ No well model needed.

@ Drift-flux wellbore flow.

5000
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S
2500 0/00 0 MshFEM, Rate=4000
© — — - Fine, Rate=60000
@ MshFEN, Rate=80000

2000 t L L
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Segment number
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Multiscale mixed /mimetic method

Application 3: History matching on geological models

Stenerud, Kippe, Datta-Gupta, and Lie, RSS 2007:
@ 1 million cells, 32 injectors, and 69 producers
@ Matching travel-time and water-cut amplitude at producers

@ Permeability updated in blocks with high average sensitivity
— Only few multiscale basis functions updated.

Time-shift misfit for water-cut Amplitude misfitfor water-cut

—=-TPFA
12007\, ——MsMFEM
\
\

Total misfit for all wells
Total misft for all wells

3 Z 3
teration teration

Time-residual Amplitude-residual

Computation time: ~ 17 min. on desktop PC. (6 iterations).
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Conclusions

Multiscale mixed /mimetic method:
@ Reservoir simulation tool that can take geomodels as input.

@ Solutions in close correspondence with solutions obtained by
solving the pressure equation directly.

o Computational cost comparable to flow based upscaling.

Applications:
@ Reservoir simulation on geomodels

@ Near-well modeling / Improved well models

@ History matching on geomodels
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Coarsening of three-dimensional structured and

unstructured grids for subsurface flow

Collaborators: Task: Given ability to model velocity on

Vera Louise Hauge, geomodels, and transport on coarse grids:
SINTEF ICT
Yalchin Efendiev, Find a suitable coarse grid that resolves

flow patterns and minimize accuracy loss.
Texas A&M WP ‘nimiz uracy

Logarithm of permeability: Layer 37 in SPE10 Logarithm of velocity on geomodel
5 or g - -

-
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Generation of coarse grid for mass balance equations

Coarsening algorithm
@ Separate regions with different magnitude of flow.
@ Combine small blocks with a neighboring block.
© Refine blocks with too much flow.
©Q Repeat step 2.

Coarse grid: Initial step, 952 cells Coarse grid: Step 2, 101 cells

B Coarse grid: Step 3, 310 cIIs
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Grid generation procedure

Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Separate: Define g = In|v| and D = (max(g) — min(g))/10.

Region i = {c: min(g) + (i — 1)D < g(c) < min(g) +iD}.

Coarse grid: Initial step
- .

Initial grid:
connected subregions
— 733 blocks
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Grid generation procedure

Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Separate: Define g = In|v| and D = (max(g) — min(g))/10.
Region i = {c: min(g) + (i — 1)D < g(c) < min(g) +iD}.

Initial grid:
connected subregions
— 733 blocks

Merge: If |B| < ¢, merge B with a neighboring block B’ with

In|v|dx ~ / In |v| dx
!BI/ ||

se grid: Step 2

7 —_— ," - =
e T
i waz== % Step 2:

SINTEF Applied Mathematic:

203 blocks
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Grid generation procedure

Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Refine: If criteria — [}, In |v|dz < C' — is violated, do
@ Start at OB and build new blocks B’ that meet criteria.

e Define B = B\ B’ and progress inwards until B meets criteria.

Coarse grid: Step 3

Step3: 914 blocks

SINTEF Applied Mathematics =] 25/35



Grid generation procedure

Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Refine: If criteria — [}, In |v|dz < C' — is violated, do
@ Start at OB and build new blocks B’ that meet criteria.

e Define B = B\ B’ and progress inwards until B meets criteria.

Coarse grid: Step 3

Step3: 914 blocks

Cleanup: Merge small blocks with adjacent block.

Coarse grid: Final step

SINTEF 25/35



Layer 68 SPE10, 5 spot well pattern

Logarlthm of permeablhty Layer 68 Logarithm of velocny on geomodel

G-ec-.)mdel 13200 cells

Logarithm of velocity on Cartesian coarse grid Logarithm of velocity on non-uniform coarse grid

:'-"-'i‘_'""_“ 4

I | B | l- 3 e
Coarse grid: 660 cells Coarse grid: 649 cells

Logarithm of velocity on Cartesian coarse grid Logarithm of velocity on non-uniform coarse grid

m

|| -?-

| |

|

. o F s
Coarse grid: 264 cells Coarse grid: 257 cells
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Numerical examples
Performance studies

Experimental setup:

Model: Incompressible two-phase flow (oil and water).
Initial state: Completely oil-saturated.

Relative permeability: k,; = 52

i 0<s; <1

Viscosity ratio: 1/, = 10.

Error measures: (Time measured in PVI)

1 ”S('vt)fsref(’at)”LI(Q)

Saturation error:  ¢(S) = [, e dt.

Water-cut error:  e(w) = [[w — wref| L2([0,17)/ |wref | £2([0,1))
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Example 1. Geomodel = individual layers from SPE10

5-spot well pattern, upscaling factor ~ 20

Saturation error for each of the 85 layers in the SPE10 model
T T T T

L
W0 ®
Layer

Water—cut error for each of the 85 layers in the SPE10 model
T T T T

olw)

Observations:

Geomodel:
60 x 220 x 1

Uniform  grid:
15 x44 x1

Non-uni. grid:
619-734 blocks

@ First 35 layers smooth = Uniform grid adequate.

o Last 50 layers fluvial = Uniform grid inadequate.

@ Non-uniform grid gives consistent results for all layers.

SINTEF Applied Mathematics . .
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Example 2: Geomodel = unstructured corner-point grid

20 realizations from lognormal distribution, Q-of-5-spot well pattern, upsc. factor ~ 25

< 2 realizations.
Geomodel:
15206 cells

Water—cut error for 20 stochastic pormeailty realizations.

Uniform grid:
| 838 blocks

vor forp, =104,

Non-uni. grid:
647-704 blocks

Water—cut en

Observations:
@ Coarsening algorithm applicable to unstructured grids
— accuracy consistent with observations for SPE10 models.

@ Results obtained with uniform grid (in index space) inaccurate.
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Robustness with respect to degree of coarsening, 5-spot well pattern

Example 3: Geomodel = four bottom layers from SPE10

Number of cells in grid (upscaling factor 4-400)
Uniform grid | 30x110x4 | 20x55x4 | 15x44x2 | 10x22x2 | 6x22x1
13200 4400 1320 440 132
Non-U. grid 7516 3251 1333 419 150
|

0 0
30x110x4 20x55x4 15x44x2 10x22x2 6x22x1 30x110x4 20x55x4 15x44x2 10x22x2 6x22x1

Observations:
@ Non-uniform grid gives better accuracy than uniform grid.

@ Water-cut error almost grid-independent for non-uniform grid.

SINTEF
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Example 4. Geomodel = four bottom layers from SPE10

Robustness with respect to well configuration, upscaling factor ~ 40

o = Injector

® = Producer

Wellpatterns

Average saturatior

Uniform grid:
15 x 44 x 2

Non-uniform grid
~ 1320 blocks

o o
A3 B3 O3 D7) E(1397) A3 (s Cae) D) E(139)

@ Non-uniform grid gives better accuracy than uniform grid
— substantial difference in water-cut error for all cases.

SINTEF Applied Mathematics o
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Example 5: Geomodel = four bottom layers from SPE10

Dependency on initial flow conditions, upscaling factor ~ 40

Average saturation error Water—cut error

Grid generated
with respective
well patterns.

o o
A(33)  BUIE)  o(sde D7) E(137) AU3®  BUss) (s D) E(137)

Average saturation error Water-cut error

oss I 1 con-uniform coarsening Il \on-uriform coarsening
Il Uriform coarsening I Uriform coarsening

Grid generated
with pattern C

0 0
AGI)  BoS  cosm Do EQS) AGs)  BaIm  cos) Do EGIT)

Observation:
Grid resolves high-permeable regions with good connectivity
— Grid need not be regenerated if well pattern changes.

Applied Mathematics =]
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Example 6: Geomodel = four bottom layers from SPE10

Robustness with respect changing well positions and well rates, upscaling factor ~ 40

Water-cuts for case with changing well-rates Water—cuts for case with changing well-configurations

0.9 - - - - - - - - 1

08l 09

07 08
07

0.6
06

05
05

04
04

03
03

02 02 i

| Reference solution Reference solution
01f /|~ = = Non-uniform coarsening: e(w)=0.0123 0.1 ~ ~ ~ Non-uniform coarsening: e(w)=0.0273
) ) ! | — — Uniform coarsening: e(w)=0.0993 ~ — Uniform coarsening: e(w)=0.0902
% 01 02 o0s 04 05 06 07 08 08 1 % . . 3 04 05 06 07 08 09 1
PVI PVI
5-spot, random prod. rates well patterns: 4 cycles A-E
grid generated with equal rates grid generated with pattern C
Observations:

@ NU water-cut tracks reference curve closely: 1%—3% error.

@ Uniform grid gives ~ 10% water-cut error.
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Conclusions

Flashback:

@ A generic semi-automated algorithm for generating coarse
grids that resolve flow patterns has been presented.

@ Solutions are significantly more accurate than solutions
obtained on uniform coarse grids with similar number of cells.

e Water-cut error: 1%-3% — pseudofunctions superfluous.

@ Grid need not be regenerated when flow conditions change!

v

Potential application:
User-specified grid-resolution to fit available computer resources.

v

Relation to other methods:

Belongs to family of flow-based grids?: designed for flow scenarios
where heterogeneity, rather than gravity, dominates flow patterns.

“Garcia, Journel, Aziz (1990,1992), Durlofsky, Jones, Milliken (1994,1997)

v
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| have a dream ...

SINTEF Applied Mathematics



	Grid coarsening algorithm
	Two-phase flow simulation results

