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Corner-Point Grids
Industry standard for modelling complex reservoir geology

Specified in terms of:

areal 2D mesh of vertical or
inclined pillars

each volumetric cell is restriced by
four pillars

each cell is defined by eight corner
points, two on each pillar
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Motivation

Often too much details in geomodels to run reservoir simulations
directly ⇒ model coarsening is necessary.

Standard upscaling

Difficult to obtain coarse scale
parameters consistently.
Need to resample: coarse grid does
not match fine grid.

Multiscale Mixed FEM (MsMFEM);

Incorporates fine scale features in
coarse model basis functions.
Coarse grid can (in principle) be any
partition of the fine grid.

Goal: Automated accurate upgridding
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Model Equations

Elliptic pressure equation:

v = −λ(S)K∇p
∇ · v = q

Hyperbolic saturation equation:

φ
∂S

∂t
+∇ · (vf(S)) = qw

Total velocity:

v = vo + vw

Total mobility:

λ = λw(S) + λo(S)

= krw(S)/µw + kro(S)/µo

Saturation water: S

Fractional flow water:

f(S) = λw(S)/λ(S)
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Mixed Methods

Weak formulation:

Find (v, p) ∈ H1,div
0 × L2 such that∫

(λK)−1v̂ · v dx−
∫
p∇ · v̂ dx = 0, ∀v̂ ∈ H1,div

0 ,∫
p̂∇ · v dx =

∫
qp̂ dx, ∀p̂ ∈ L2.

Multiscale discretization:

Seek solutions in low-dimensional subspaces

Ums ⊂ H1,div
0 and V ⊂ L2,

where local fine-scale properties are incorporated into the basis
functions.
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Mixed Methods – Lowest Order Discretization

Given finite bases {φi} = V ⊂ L2 and {ψk} = U ⊂ H1,div
0 , the

resulting linear system reads(
B C
CT O

) (
v

−p

)
=

(
0
q

)
,

where

Bkl =

∫
ψT

k (λK)−1ψl dx and Cki =

∫
φi∇ · ψk dx.

Use hybridization to obtain SPD system
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Multiscale Mixed FEM (MsMFEM)
Grids and Basis Functions

Assume we are given a fine grid with permeability and porosity
attached to each fine-grid cell:

We construct a coarse grid, and choose the discretization spaces
Ums and V such that:

For each coarse block Ti, there is a basis function φi ∈ V .

For each coarse edge Γij , there is a basis function ψij ∈ Ums.
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Example: A Three-Block Domain −→ Three Basis
Functions
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Multiscale Basis Functions for Velocity

Each basis function ψ is the (numerical) solution of a one-phase
local flow-problem over two neighboring blocks Ti, Tj :
ψ = −K∇φ with

∇ · ψ =

{
wi(x), for x ∈ Ti

−wj(x), for x ∈ Tj ,

with BCs ψ · n = 0 on ∂(Ti ∪ Γij ∪ Tj).

Weights wi, wj :
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Subgrid Solvers

MsMFEM requires that a conservative numerical method is used to
compute velocity basis functions.

Alternatives for corner-point grids:

Mixed FEM on tetrahedral subgrid of corner-point grid

TPFA or MPFA finite-volume methods

Mimetic finite-difference methods

All of the above can be recast in mixed form as a discrete
approximation of the bilinear form:∫

Ω
uT (λK)−1v ≈

∑
Ei

uiMivi,

where ui and vi contain the fluxes of u and v over the cell-faces of
Ei. ⇒ All applicable in the MsMFEM framework.
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Numerical Example: A Wavy Depositional Bed (1)

30× 30× 100 logically
Cartesian.

Corner to corner flow

Three different perm fields

Varying levels of coarsening
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Numerical Example: A Wavy Depositional Bed (2)
Coarse Partitioning in Index space
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Numerical Example: A Wavy Depositional Bed (3)
Coarse Partitioning in Index space

Relative error in saturation at 0.5PVI:

Coarse grid Isotropic Anisotropic Heterogeneous

10× 10× 10 0.026 0.143 0.094
6× 6× 2 0.042 0.169 0.141
3× 3× 1 0.065 0.127 0.106
5× 5× 10 0.060 0.138 0.142

Logically 5× 5× 10
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Can we improve results by altering the coarse grid?

Potential problems for MsMFEM

Bidirectional flow over interfaces:

Flow barriers traversing blocks:
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Automated Upgridding
Guidelines for choosing good grids

1 Minimize bidirectional flow over
interfaces:

Avoid unnecessary irregularity
(Blocks 6+7 and 3+8)
Avoid single neighbors (Block 4)
Ensure faces transverse to major
flow (Block 5).

2 Blocks and faces should follow
geological layers (Block 3+8)

3 Blocks should adapt to flow
obstacles whenever possible.

4 For efficiency: reduce number of
connections

5 Avoid having too many small
blocks

1 2 3
4

5

6 7 8

Flow direction  Flow direction  Flow direction  Flow direction  Flow direction  Flow direction  

1 3
2

5

6 7 8

Flow direction  Flow direction  

Applied Mathematics 16/18



Numerical Example: A Wavy Depositional Bed (4)
General Partitionings

Relative error in saturation at 0.5PVI :

Coarse grid Isotropic Anisotropic Heterogeneous

Physical 0.134 0.274 0.200
Logical 0.060 0.138 0.142

Constrained 0.057 0.148 0.099

Physical Logical Constrained
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Concluding Remarks and Further Work

Presented a multiscale mixed FEM that efficiently eliminates
the need for upscaled properties and resampling on complex
geomodels.

Suggested guidelines for automated upgridding.

Further testing on real field models.

Paper:

Multiscale mixed/mimetic methods on corner-point grids.
Accepted in Computational Geosciences, Special issue on
multiscale methods
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