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Corner-Point Grids

Industry standard for modelling complex reservoir geology

Specified in terms of:

@ areal 2D mesh of vertical or
inclined pillars

@ each volumetric cell is restriced by
four pillars

@ each cell is defined by eight corner
points, two on each pillar
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Often too much details in geomodels to run reservoir simulations
directly = model coarsening is necessary.

SlNTEF Applied Mathematics . . . o 4/18



Often too much details in geomodels to run reservoir simulations
directly = model coarsening is necessary.

@ Standard upscaling
e Difficult to obtain coarse scale
parameters consistently.
o Need to resample: coarse grid does
not match fine grid.

SINTEF Applied Mathematics A o 4/18



Often too much details in geomodels to run reservoir simulations
directly = model coarsening is necessary.

@ Standard upscaling

e Difficult to obtain coarse scale
parameters consistently.

o Need to resample: coarse grid does
not match fine grid.

e Multiscale Mixed FEM (MsMFEM));,

e Incorporates fine scale features in
coarse model basis functions.

o Coarse grid can (in principle) be any
partition of the fine grid.

SlNTEF Applied Mathematics . . . o 4/18



Often too much details in geomodels to run reservoir simulations
directly = model coarsening is necessary.

@ Standard upscaling

e Difficult to obtain coarse scale
parameters consistently.

o Need to resample: coarse grid does
not match fine grid.

e Multiscale Mixed FEM (MsMFEM));,

e Incorporates fine scale features in
coarse model basis functions.

o Coarse grid can (in principle) be any
partition of the fine grid.

Goal: Automated accurate upgridding
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Model Equations

Elliptic pressure equation: @ Total velocity:
v=—-XS)KVp V= Uy + Uy
V.v=
1 o Total mobility:

Hyperbolic saturation equation:

A= Aw(S) + )\O(S)
(z)i +V- (T)f(S)) = qu - krw(s)/ﬂw + kro(S)/Mo

Saturation water: S

Fractional flow water:

f(8) = Aw(5)/A(S)
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Mixed Methods

Weak formulation:

Find (v,p) € Hy®™ x L? such that

/()\K)l,l’) ~vdr — /pv - Ddr = 07 SOR= Hé’di\/’

/ﬁv-vdajz/qﬁdx, Vp e L2.
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Mixed Methods

Weak formulation:

Find (v, p) € Hé’div x L? such that
/()\K)l,l’) ~vdr — /pv - Ddr = 07 SOR= Hé’di\/’

/ﬁv-vdajz/qﬁdx, Vp e L2.

Multiscale discretization:
Seek solutions in low-dimensional subspaces

U™ C Hy™ and V C 12,

where local fine-scale properties are incorporated into the basis
functions. |
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Mixed Methods — Lowest Order Discretization

Given finite bases {¢;} =V C L2 and {y} = U C Hy'™", the
resulting linear system reads

(e o)(5)-(3)

Bk,:/zp{(AK)lwl dr and Ckiz/@v.wk de.

where
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Mixed Methods — Lowest Order Discretization

Given finite bases {¢;} =V C L2 and {y} = U C Hy'™", the
resulting linear system reads

(e o)(5)-(3)

Bk,:/zp{(AK)lwl dr and Ckiz/@v.wk de.

where

@ Use hybridization to obtain SPD system
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Multiscale Mixed FEM (MsMFEM)

Grids and Basis Functions

Assume we are given a fine grid with permeability and porosity
attached to each fine-grid cell:
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Multiscale Mixed FEM (MsMFEM)

Grids and Basis Functions

Assume we are given a fine grid with permeability and porosity
attached to each fine-grid cell:

We construct a coarse grid, and choose the discretization spaces
U™ and V such that:

@ For each coarse block Tj, there is a basis function ¢; € V.

@ For each coarse edge I';;, there is a basis function v;; € U™?.
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Example: A Three-Block Domain — Three Basis
Functions

/]
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Multiscale Basis Functions for Velocity

Each basis function ¢ is the (numerical) solution of a one-phase
local flow-problem over two neighboring blocks T3, T}:
Y = —KV¢ with

V.= wi(x), forzeT;
—wj(z), forx e Ty,

with BCs ¢ - = 0 on 9(T; UT;; UTY).
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Multiscale Basis Functions for Velocity

Each basis function ¢ is the (numerical) solution of a one-phase
local flow-problem over two neighboring blocks T3, T}:
Y = —KV¢ with

V.= wi(x), forzeT;
—wj(z), forx e Ty,

with BCs ¢ - = 0 on 9(T; UT;; UTY).

Weights w;, w;:
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Subgrid Solvers

MsMFEM requires that a conservative numerical method is used to
compute velocity basis functions.
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Subgrid Solvers

MsMFEM requires that a conservative numerical method is used to
compute velocity basis functions.
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Subgrid Solvers

MsMFEM requires that a conservative numerical method is used to
compute velocity basis functions.
Alternatives for corner-point grids:

@ Mixed FEM on tetrahedral subgrid of corner-point grid

@ TPFA or MPFA finite-volume methods

@ Mimetic finite-difference methods

All of the above can be recast in mixed form as a discrete
approximation of the bilinear form:

/ uT(/\K)flv ~ Z u;M;v;,
Q E.

where u; and v; contain the fluxes of © and v over the cell-faces of
FE;. = All applicable in the MsSMFEM framework.
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Numerical Example: A Wavy Depositional Bed (1)

@ 30 x 30 x 100 logically
Cartesian.

@ Corner to corner flow
@ Three different perm fields

@ Varying levels of coarsening
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Numerical Example: A Wavy Depositional Bed (2)

Coarse Partitioning in Index space
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Numerical Example: A Wavy Depositional Bed (3)

Coarse Partitioning in Index space

Relative error in saturation at 0.5PVI:

Coarse grid | Isotropic | Anisotropic | Heterogeneous
10 x 10 x 10 | 0.026 0.143 0.094

6x 6x2 0.042 0.169 0.141

3x 3x1 0.065 0.127 0.106

5x 5x10| 0.060 0.138 0.142
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Logically 5 x 5 x 10 Watercut
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Can we improve results by altering the coarse grid?

Potential problems for MsMFEM
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Can we improve results by altering the coarse grid?

Potential problems for MsMFEM

Bidirectional flow over interfaces:
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|||||||

LI -
[ T b
LI T T T Y r
TR
\\\\\\";.
Vv vy b !
VAN N
\\\\\\\_j

,,,,,,,,,,

,,,,,,,,,,

P
Eg P R

L e o

SINTEF

Applied Mathematics . .

15/18



Automated Upgridding

Guidelines for choosing good grids

Flow direction =————>

@ Minimize bidirectional flow over e _
interfaces: gl i annnnne LN
e Avoid unnecessary irregularity :\JS T 3} »
(Blocks 647 and 3-+8) ] ]
e Avoid single neighbors (Block 4) T j[—
e Ensure faces transverse to major il i:;_/ 3
flow (Block 5). "\\\\ LT ///”'
@ Blocks and faces should follow h g
geological layers (Block 3+8) Flow drecion ——>
© Blocks should adapt to flow _,/”/:/ PN T
obstacles whenever possible. -l jS I "‘7\\: 3}/;
Q For efficiency: reduce number of T ]
connections LT Tl
© Avoid having too many small ] 121 |
blocks — =
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Numerical Example: A Wavy Depositional Bed (4)

General Partitionings

Relative error in saturation at 0.5PVI :

Coarse grid | Isotropic | Anisotropic | Heterogeneous
Physical | 0.134 0.274 0.200
Logical | 0.060 0.138 0.142
Constrained 0.057 0.148 0.099

Physical Logical Constrained
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Concluding Remarks and Further Work

@ Presented a multiscale mixed FEM that efficiently eliminates
the need for upscaled properties and resampling on complex

geomodels.
@ Suggested guidelines for automated upgridding.

@ Further testing on real field models.

o 18/18
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Concluding Remarks and Further Work

@ Presented a multiscale mixed FEM that efficiently eliminates
the need for upscaled properties and resampling on complex
geomodels.

@ Suggested guidelines for automated upgridding.

@ Further testing on real field models.

Paper:

Multiscale mixed/mimetic methods on corner-point grids.
Accepted in Computational Geosciences, Special issue on
multiscale methods
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