Multiscale Mixed/Mimetic FEM on Complex Geometries

SINTEF ICT Oslo, Norway

- 2 Multiscale Mixed FEM
 - Velocity basis functions
 - Subgrid solvers
- 3 Numerical Example
 - Guidelines for upgridding of complex model

4 Conluding Remarks

Specified in terms of:

- areal 2D mesh of vertical or inclined pillars
- each volumetric cell is restriced by four pillars
- each cell is defined by eight corner points, two on each pillar

Motivation

Often too much details in *geomodels* to run reservoir simulations directly \Rightarrow model coarsening is necessary.

< 🗆 🕨

Often too much details in *geomodels* to run reservoir simulations directly \Rightarrow model coarsening is necessary.

- Standard upscaling
 - Difficult to obtain coarse scale parameters consistently.
 - Need to *resample*: coarse grid does not match fine grid.

Often too much details in *geomodels* to run reservoir simulations directly \Rightarrow model coarsening is necessary.

- Standard upscaling
 - Difficult to obtain coarse scale parameters consistently.
 - Need to *resample*: coarse grid does not match fine grid.

- Multiscale Mixed FEM (MsMFEM);
 - Incorporates fine scale features in coarse model basis functions.
 - Coarse grid can (in principle) be any partition of the fine grid.

Often too much details in *geomodels* to run reservoir simulations directly \Rightarrow model coarsening is necessary.

- Standard upscaling
 - Difficult to obtain coarse scale parameters consistently.
 - Need to *resample*: coarse grid does not match fine grid.

- Multiscale Mixed FEM (MsMFEM);
 - Incorporates fine scale features in coarse model basis functions.
 - Coarse grid can (in principle) be any partition of the fine grid.

Goal: Automated accurate upgridding

Elliptic pressure equation:

$$v = -\lambda(S)\mathbf{K}\nabla p$$
$$\nabla \cdot v = q$$

Hyperbolic saturation equation:

$$\phi \frac{\partial S}{\partial t} + \nabla \cdot (vf(S)) = q_w$$

• Total velocity:

$$v = v_o + v_w$$

• Total mobility:

$$\lambda = \lambda_w(S) + \lambda_o(S)$$

= $k_{rw}(S)/\mu_w + k_{ro}(S)/\mu_o$

- Saturation water: \boldsymbol{S}
- Fractional flow water:

 $f(S) = \lambda_w(S) / \lambda(S)$

Weak formulation:

Find $(v,p) \in H^{1,\operatorname{div}}_0 imes L^2$ such that

$$\int (\lambda \mathbf{K})^{-1} \hat{v} \cdot v \, dx - \int p \nabla \cdot \hat{v} \, dx = \mathbf{0}, \qquad \forall \hat{v} \in H_0^{1, \text{div}},$$
$$\int \hat{p} \nabla \cdot v \, dx = \int q \hat{p} \, dx, \quad \forall \hat{p} \in L^2.$$

< 🗆 🕨

Weak formulation:

Find $(v,p) \in H_0^{1,\operatorname{div}} \times L^2$ such that

$$\int (\lambda \mathbf{K})^{-1} \hat{v} \cdot v \, dx - \int p \nabla \cdot \hat{v} \, dx = 0, \qquad \forall \hat{v} \in H_0^{1, \text{div}},$$
$$\int \hat{p} \nabla \cdot v \, dx = \int q \hat{p} \, dx, \quad \forall \hat{p} \in L^2.$$

Multiscale discretization:

Seek solutions in low-dimensional subspaces

$$U^{ms} \subset H_0^{1,\operatorname{div}} \text{ and } V \subset L^2,$$

where local fine-scale properties are incorporated into the basis functions.

Given finite bases $\{\phi_i\} = V \subset L^2$ and $\{\psi_k\} = U \subset H_0^{1,\text{div}}$, the resulting linear system reads

$$\left(\begin{array}{cc} \mathbf{B} & \mathbf{C} \\ \mathbf{C}^T & \mathbf{O} \end{array}\right) \left(\begin{array}{c} \mathbf{v} \\ -\mathbf{p} \end{array}\right) = \left(\begin{array}{c} \mathbf{0} \\ \mathbf{q} \end{array}\right),$$

where

$$\mathbf{B}_{kl} = \int \psi_k^T (\lambda \mathbf{K})^{-1} \psi_l \, dx \quad \text{and} \quad \mathbf{C}_{ki} = \int \phi_i \nabla \cdot \psi_k \, dx.$$

Given finite bases $\{\phi_i\} = V \subset L^2$ and $\{\psi_k\} = U \subset H_0^{1,\text{div}}$, the resulting linear system reads

$$\left(\begin{array}{cc} \mathbf{B} & \mathbf{C} \\ \mathbf{C}^T & \mathbf{O} \end{array}\right) \left(\begin{array}{c} \mathbf{v} \\ -\mathbf{p} \end{array}\right) = \left(\begin{array}{c} \mathbf{0} \\ \mathbf{q} \end{array}\right),$$

where

$$\mathbf{B}_{kl} = \int \psi_k^T (\lambda \mathbf{K})^{-1} \psi_l \, dx \quad \text{and} \quad \mathbf{C}_{ki} = \int \phi_i \nabla \cdot \psi_k \, dx.$$

• Use hybridization to obtain SPD system

< 🗆 🕨

We construct a *coarse* grid, and choose the discretization spaces U^{ms} and V such that:

We construct a *coarse* grid, and choose the discretization spaces U^{ms} and V such that:

• For each coarse block T_i , there is a basis function $\phi_i \in V$.

We construct a *coarse* grid, and choose the discretization spaces U^{ms} and V such that:

- For each coarse block T_i , there is a basis function $\phi_i \in V$.
- For each coarse edge Γ_{ij} , there is a basis function $\psi_{ij} \in U^{ms}$.

Example: A Three-Block Domain \longrightarrow Three Basis Functions

< 🗆 🕨

Multiscale Basis Functions for Velocity

Each basis function ψ is the (numerical) solution of a one-phase local flow-problem over two neighboring blocks T_i , T_j : $\psi = -\mathbf{K}\nabla\phi$ with

$$\nabla \cdot \psi = \begin{cases} w_i(x), & \text{ for } x \in T_i \\ -w_j(x), & \text{ for } x \in T_j, \end{cases}$$

with BCs $\psi \cdot n = 0$ on $\partial(T_i \cup \Gamma_{ij} \cup T_j)$.

Multiscale Basis Functions for Velocity

Each basis function ψ is the (numerical) solution of a one-phase local flow-problem over two neighboring blocks T_i , T_j : $\psi = -\mathbf{K}\nabla\phi$ with

$$\nabla \cdot \psi = \begin{cases} w_i(x), & \text{ for } x \in T_i \\ -w_j(x), & \text{ for } x \in T_j, \end{cases}$$

with BCs $\psi \cdot n = 0$ on $\partial(T_i \cup \Gamma_{ij} \cup T_j)$.

Weights w_i, w_j :

10/18

11/18

Alternatives for corner-point grids:

- Mixed FEM on tetrahedral subgrid of corner-point grid
- TPFA or MPFA finite-volume methods
- Mimetic finite-difference methods

Alternatives for corner-point grids:

- Mixed FEM on tetrahedral subgrid of corner-point grid
- TPFA or MPFA finite-volume methods
- Mimetic finite-difference methods

All of the above can be recast in mixed form as a *discrete* approximation of the bilinear form:

$$\int_{\Omega} u^T (\lambda \mathbf{K})^{-1} v \approx \sum_{E_i} \mathbf{u}_i \mathbf{M}_i \mathbf{v}_i,$$

where \mathbf{u}_i and \mathbf{v}_i contain the fluxes of u and v over the cell-faces of E_i .

Alternatives for corner-point grids:

- Mixed FEM on tetrahedral subgrid of corner-point grid
- TPFA or MPFA finite-volume methods
- Mimetic finite-difference methods

All of the above can be recast in mixed form as a *discrete* approximation of the bilinear form:

$$\int_{\Omega} u^T (\lambda \mathbf{K})^{-1} v \approx \sum_{E_i} \mathbf{u}_i \mathbf{M}_i \mathbf{v}_i,$$

where \mathbf{u}_i and \mathbf{v}_i contain the fluxes of u and v over the cell-faces of E_i . \Rightarrow All applicable in the MsMFEM framework.

Numerical Example: A Wavy Depositional Bed (1)

- $30 \times 30 \times 100$ logically Cartesian.
- Corner to corner flow
- Three different perm fields
- Varying levels of coarsening

Numerical Example: A Wavy Depositional Bed (2) Coarse Partitioning in Index space

< □ →

13/18

Numerical Example: A Wavy Depositional Bed (3) Coarse Partitioning in Index space

Relative error in saturation at 0.5PVI:

Coarse grid	Isotropic	Anisotropic	Heterogeneous
$10\times10\times10$	0.026	0.143	0.094
$6 \times 6 \times 2$	0.042	0.169	0.141
$3 \times 3 \times 1$	0.065	0.127	0.106
$5 \times 5 \times 10$	0.060	0.138	0.142

14/18

Can we improve results by altering the coarse grid?

Potential problems for MsMFEM

Can we improve results by altering the coarse grid?

Potential problems for MsMFEM

Bidirectional flow over interfaces:

Can we improve results by altering the coarse grid?

Potential problems for MsMFEM

Bidirectional flow over interfaces:

Flow barriers traversing blocks:

Automated Upgridding Guidelines for choosing good grids

- Minimize bidirectional flow over interfaces:
 - Avoid unnecessary irregularity (Blocks 6+7 and 3+8)
 - Avoid single neighbors (Block 4)
 - Ensure faces transverse to major flow (Block 5).
- Blocks and faces should follow geological layers (Block 3+8)
- Blocks should adapt to flow obstacles whenever possible.
- For efficiency: reduce number of connections
- Avoid having too many small blocks

🕥 SINTEF

Numerical Example: A Wavy Depositional Bed (4) General Partitionings

Relative error in saturation at 0.5PVI :

Coarse grid	Isotropic	Anisotropic	Heterogeneous
Physical	0.134	0.274	0.200
Logical	0.060	0.138	0.142
Constrained	0.057	0.148	0.099

Concluding Remarks and Further Work

- Presented a multiscale mixed FEM that efficiently eliminates the need for upscaled properties and resampling on complex geomodels.
- Suggested guidelines for automated upgridding.
- Further testing on real field models.

< 🗆 🕨

Concluding Remarks and Further Work

- Presented a multiscale mixed FEM that efficiently eliminates the need for upscaled properties and resampling on complex geomodels.
- Suggested guidelines for automated upgridding.
- Further testing on real field models.

Paper:

Multiscale mixed/mimetic methods on corner-point grids. Accepted in *Computational Geosciences, Special issue on multiscale methods*

< 🗆 🕨