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Reservoir simulation workflow today:

@B

Upscaling Flow simulation Management

Geomodel

Tomorrow:
o Earth Model shared between geologists and reservoir engineers

@ Simulators take Earth Model as direct input

@ Users allowed to specify grid-resolution at runtime to fit
available computer resources and project requirements
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Objective and implication

Main objective:
Build a generic framework for reservoir modeling and simulation
capable of taking geomodels as input.

— generic: one implementation applicable to all types of models.

4

Value: Improved modeling and simulation workflows.
@ Geologists may perform simulations to validate geomodel.

@ Reservoir engineers gain understanding of geomodeling.

o Facilitate use of geomodels in reservoir management.
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Pressure equation:
@ Solution grid: Geomodel — no effective parameters.

e Discretization: Multiscale mixed / mimetic method

Coarse grid: N N ‘Q

obtained by ) SE R
up-gridding in = .

index space (S5 W S

Mass balance equations:
@ Solution grid: Non-uniform coarse grid.

o Discretization: Two-scale upstream weighted FV method
— integrals evaluated on geomodel.

@ Pseudofunctions: No.
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Multiscale mixed /mimetic method

— same implementation for all types of grids

Multiscale mixed/mimetic method (4M)
Generic two-scale approach to discretizing the pressure equation:

@ Mixed FEM formulation on coarse grid.

@ Flow patterns resolved on geomodel with mimetic FDM.
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Multiscale mixed /mimetic method

Flow based upscaling versus multiscale method

Standard upscaling:
rl

i [+5 i
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Multiscale mixed /mimetic method
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Multiscale mixed /mimetic method
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Multiscale mixed /mimetic method

Flow based upscaling versus multiscale method

Standard upscaling:
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Flow based upscaling versus multiscale method
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Multiscale mixed/mimetic method

Flow based upscaling versus multiscale method

Standard upscaling:
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Multiscale mixed /mimetic method

Flow based upscaling versus multiscale method

Standard upscaling: Multiscale method (4M):
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Multiscale mixed /mimetic method

Flow based upscaling versus multiscale method

Standard upscaling: Multiscale method (4M):
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Multiscale mixed /mimetic m

Flow based upscaling versus multiscale method

Standard upscaling:
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Multiscale mixed /mimetic m

Flow based upscaling versus multiscale method

Standard upscaling:
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Multiscale mixed /mimetic method

Hybrid formulation of pressure equation: No-flow boundary conditions

Discrete hybrid formulation: (u,v), = [, w-vdx

Find v € V, p € U, ® € I such that for all blocks T},, we have

A0, u)m — (0, V - u) + Jor, mu-nds = (wgVD,u)m,
(%2, Dm + (V- 0,0 + (6505 - Vool = (@, Dm
faTm/w-nds = 0.

forallueV,l €U and pu €Tl

Solution spaces and variables: 7 = {7}, }

V C HI(T), U ="Py(T), N = Po({0T,, N OT},.}).

v = velocity, p = block pressures,

m = interface pressures.

v
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Multiscale mixed /mimetic method

Basis functions for modeling the velocity field

Definition of approximation space for velocity:

The approximation space V' is spanned by basis functions ¢, that
are designed to embody the impact of fine-scale structures.

Definition of basis functions:
For each pair of adjacent blocks 7}, and T;,, define ¢ by

Y-n=0ond(T,UT,)

—wy in Ty,

= —KVuin T UT,, v-zp:{wm in T,

Split ¢ %, = Y|r,.,  Vh = —Y|7,..
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Multiscale mixed /mimetic

Workflow
At initial time
Detect all adjacent blocks Compute 9 for each domain

/
== =

For each time-step:
@ Assemble and solve coarse grid system.
@ Recover fine grid velocity.

@ Solve mass balance equations.
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Multiscale mixed /mimetic method

Layer 36 from SPE10 model 2 (Christie and Blunt, 2001).

Example: Layer 36 from SPE10 (Christie and Blunt, 2001).

Pressure field computed with 4M

Pressure field computed with mimetic FDM

Primary features
@ Coarse pressure solution, subgrid resolution at well locations.

e Coarse velocity solution with subgrid resolution everywhere.

o 10/23
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Multiscale mixed /mimetic method

Fast reservoir simulation on geomodels

Model: SPE10 model 2, 1.1 M cells, 1 injector, 4 producers. J

Water-cut curves at producers A-D

Producer A Producer B

Coarse grid:
5x11 x 17
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Coarse grid formulation of mass balance equations

Utilizing high resolution velocity fields and avoiding pseudofunctions

Modeling transport on the fine grid (e.g. geomodel) may be a
bottle neck or infeasible.

Question: Can we derive a coarse grid formulation that exploits
the key information in the high resolution velocity field?
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Coarse grid formulation of mass balance equations

Utilizing high resolution velocity fields and avoiding pseudofunctions

Modeling transport on the fine grid (e.g. geomodel) may be a
bottle neck or infeasible.

Question: Can we derive a coarse grid formulation that exploits
the key information in the high resolution velocity field?

Yes, by using a coarse grid that resolves flow patterns.

permeability: Layer 37 i
. -

Logarithm of velocity on geomodel
> e -

-

Logarithm of velocity on Cartesian coarse grid: 220 cells

™

e gl

-
- T Re—

v
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Coarse grid formulation of mass balance equations

Utilizing high resolution velocity fields and avoiding pseudofunctions

Modeling transport on the fine grid (e.g. geomodel) may be a
bottle neck or infeasible.

Question: Can we derive a coarse grid formulation that exploits
the key information in the high resolution velocity field?

How: Separate, clean, refine, cleanup.

Coarse grid: Initial step, 952 cells Coarse grid: Step 2, 101 cells

12/23
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Grid generation procedure

Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Separate: Define g = In|v| and D = (max(g) — min(g))/10.

Region i = {c: min(g) + (i — 1)D < g(c) < min(g) +iD}.

Coarse grid: Initial step
- .

Initial grid:
connected subregions
— 733 blocks
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Grid generation procedure

Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Separate: Define g = In|v| and D = (max(g) — min(g))/10.
Region i = {c: min(g) + (i — 1)D < g(c) < min(g) +iD}.

Initial grid:
connected subregions
— 733 blocks

Merge: If |B| < ¢, merge B with a neighboring block B’ with

In|v|dx ~ / In |v| dx
!BI/ ||

se grid: Step 2

7 —_— ," - =
e T
i waz== % Step 2:

SINTEF Applied Mathematic:
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Grid generation procedure

Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Refine: If criteria — [}, In |v|dz < C' — is violated, do
@ Start at OB and build new blocks B’ that meet criteria.

e Define B = B\ B’ and progress inwards until B meets criteria.

Coarse grid: Step 3

Step3: 914 blocks
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Grid generation procedure

Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Refine: If criteria — [}, In |v|dz < C' — is violated, do
@ Start at OB and build new blocks B’ that meet criteria.

e Define B = B\ B’ and progress inwards until B meets criteria.

Coarse grid: Step 3

Step3: 914 blocks

Cleanup: Merge small blocks with adjacent block.

Coarse grid: Final step
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Layer 68 SPE10, 5 spot well pattern

Logarlthm of permeablhty Layer 68 Logarithm of velocny on geomodel

G-ec-.)mdel 13200 cells

Logarithm of velocity on Cartesian coarse grid Logarithm of velocity on non-uniform coarse grid

:'-"-'i‘_'""_“ 4

I | B | l- 3 e
Coarse grid: 660 cells Coarse grid: 649 cells

Logarithm of velocity on Cartesian coarse grid Logarithm of velocity on non-uniform coarse grid
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Coarse grid: 264 cells Coarse grid: 257 cells
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Performance study

Model: Incompressible and immiscible two-phase flow (oil
and water) without effects from gravity and capillary forces.

Initial state: Completely oil-saturated.
Parameters: k,; = 535, 0 < s; <1, and p1o/p1y = 10.

Coarse grid formulation
Two-scale first order upstream-weighted finite volume method:

ASw,i = ﬁ </ quw dr — fw(Sw)Uw . nds>
Jv, @ \Uv, v,

Error measures: ¢t = PVI, w = water-cut, r = reference solution.
e(S) = [(ISC:t) = Se( ) /N1Se (- 1) 1) dt.

e(w) = |lw — w2/ ||wel| 2
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Performance study

Model: Incompressible and immiscible two-phase flow (oil
and water) without effects from gravity and capillary forces.

Initial state: Completely oil-saturated.

Parameters: k,; = 3?, 0<s; <1, and po/pty = 10.

Coarse grid formulation
Two-scale first order upstream-weighted finite volume method:

At
ASw,i: /qwdx— Z fw(sgjpstream)vz}s

fVi ¢ Vi Vi1 COV;

Error measures: ¢t = PVI, w = water-cut, r = reference solution.
e(S) = [(ISC:t) = Se( ) o /1S 1) 1) dt.

e(w) = [[w = wil| 2/ | we] Lo-
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Example 1. Geomodel = individual layers from SPE10

5-spot well pattern, upscaling factor ~ 20

Saturation error for each of the 85 layers in the SPE10 model
T T T

1 | 1
E I
Layer

Water—cut error for each of the 85 layers in the SPE10 model
T T T T

Observations:

Geomodel:
60 x 220 x 1

Uniform  grid:
15 x44 x 1

Non-uni. grid:
619-734 blocks

@ First 35 layers smooth = Uniform grid adequate.

@ Last 50 layers fluvial = Uniform grid inadequate.

@ Non-uniform grid gives consistent results for all layers.
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Example 2: Geomodel = unstructured corner-point grid

20 realizations from lognormal distribution, Q-of-5-spot well pattern, upsc. factor ~ 25

Saturation eror for 20 stochastc permeabilty realizations

Water-out error for 20 stochastic permeabilty realizations

Average saturalion error for =101,

Observations:

E)

< 2 realizations.
Geomodel:
15206 cells

Uniform grid:
838 blocks

Non-uni. grid:
647-704 blocks

@ Coarsening algorithm applicable to unstructured grids
— accuracy consistent with observations for SPE10 models.

@ Results obtained with uniform grid (in index space) inaccurate.

SINTEF
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Robustness with respect to degree of coarsening, 5-spot well pattern

Example 3: Geomodel = four bottom layers from SPE10

Number of cells in grid (upscaling factor 4-400)
Uniform grid | 30x110x4 | 20x55x4 | 15x44x2 | 10x22x2 | 6x22x1
13200 4400 1320 440 132
Non-U. grid 7516 3251 1333 419 150
|

0 0
30x110x4 20x55x4 15x44x2 10x22x2 6x22x1 30x110x4 20x55x4 15x44x2 10x22x2 6x22x1

Observations:
@ Non-uniform grid gives better accuracy than uniform grid.

@ Water-cut error almost grid-independent for non-uniform grid.

SINTEF

Applied Mathematics =} 19/23



Example 4. Geomodel = four bottom layers from SPE10

Dependency on initial flow conditions, upscaling factor ~ 40

Average saturation error Water—cut error

Grid generated
with respective
well patterns.

o o
A(33)  BUIE)  o(sde D7) E(137) AU3®  BUss) (s D) E(137)

Average saturation error Water-cut error

oss I 1 con-uniform coarsening Il \on-uriform coarsening
Il Uriform coarsening I Uriform coarsening

Grid generated
with pattern C

0 0
AGI)  BoS  cosm Do EQS) AGs)  BaIm  cos) Do EGIT)

Observation:
Grid resolves high-permeable regions with good connectivity
— Grid need not be regenerated if well pattern changes.

Applied Mathematics =]
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Conclusions

Multiscale mixed/mimetic method:
@ Reservoir simulation tool that can take geomodels as input.

@ Solutions in close correspondence with solutions obtained by
solving the pressure equation directly.

@ Computational cost comparable to flow based upscaling.

Applications:
@ Reservoir simulation on geomodels
@ Near-well modeling / Improved well models

@ History matching on geomodels

Potential value for industry:

Improved modeling and simulation workflows.
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Conclusions

Coarse grid for mass balance equations:

@ A generic semi-automated algorithm for generating coarse
grids that resolve flow patterns has been presented.

@ Solutions are significantly more accurate than solutions
obtained on uniform coarse grids with similar number of cells.

e Water-cut error: 1%-3% — pseudofunctions superfluous.

@ Grid need not be regenerated when flow conditions change!

v

Potential application:

User-specified grid-resolution to fit available computer resources.

v

Relation to other methods:

Belongs to family of flow-based grids?: designed for flow scenarios
where heterogeneity, rather than gravity, dominates flow patterns.

?Garcia, Journel, Aziz (1990,1992), Durlofsky, Jones, Milliken (1994,1997)

v
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| have a dream ...

... that one day

geologists and reservoir engineers decide to communicate
and see their contributions as part of a larger picture,
and that multiscale methods are used for what they are worth.
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