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Standard vs Multiscale

Standard method:
Upscaled model:

⇓
Building blocks:

Two-scale method:
Geomodel:

⇓
Building blocks:

⇓
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Why multiscale?

Small scale variations in the permeability can have a strong
impact on large scale flow and should be resolved properly.

the pressure may be well resolved on a coarse grid

the fluid transport should be solved on the finest scale
possible

Thus: a multiscale method for the pressure equation should
provide velocity fields that can be used to simulate flow on a
fine scale.
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Model equations

Elliptic pressure equation:

v = −λ(S)K∇p
∇ · v = q

Hyperbolic saturation equation:

φ
∂S

∂t
+∇ · (vf(S)) = qw

Total velocity:

v = vo + vw

Total mobility:

λ = λw(S) + λo(S)

= krw(S)/µw + kro(S)/µo

Saturation water: S

Fractional flow water:

f(S) = λw(S)/λ(S)
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Multiscale mixed finite elements

Mixed formulation:

Find (v, p) ∈ H1,div
0 × L2 such that∫

(λK)−1u · v dx−
∫
p∇ · u dx = 0, ∀u ∈ H1,div

0 ,∫
l∇ · v dx =

∫
ql dx, ∀l ∈ L2.

Multiscale discretization:

Seek solutions in low-dimensional subspaces

Ums ⊂ H1,div
0 and V ∈ L2,

where local fine-scale properties are incorporated into the basis
functions.
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Discretisation matrices

(
B C
CT O

)(
v
p

)
=

(
f
g

)
where

bij =

∫
Ω
ψT

i (λK)−1ψj dx

cik =

∫
Ω
φk∇ · ψi dx

Basis for pressure φk: 1 in cell k, zero otherwise.
Basis for velocity ψi:

RT 0 Multiscale
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Multiscale basis functions for velocity

Each basis function ψ is the solution of a local flow-problem
over two neighboring cells Ek, El: ψkl = −λK∇φkl with

∇ · ψkl =

{
wk(x), for x ∈ Ek

−wl(x), for x ∈ El,

with BCs ψkl · n = 0 on ∂(Ti ∪ Γij ∪ Tj).

Weights wk, wl:
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Multiscale mixed finite element methods
Key features for applications to reservoir simulation
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Accuracy: flow scenarios match
closely fine grid simulations.

Mass conservation: the method
conserves mass on both the
coarse and the fine grid.

Efficiency: computation of basis
functions can be parallelized,
and is done only once
(moderate mobilty ratio).

Flexibility: unstructured and
irregular grids are handled
easily.
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Example: general coarse grid cells

Permeability field:

Grids:
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Example: general coarse grids

Saturation plots:

Watercut and saturation errors:

Feb 28 11/ 17



What can be done for general subgrids?

Can use standard mixed FEM for many geometries. Will
need a bunch of mappings (Piola transforms) to a bunch of
reference elements.

Subdivision of elements into tetrahedra (2- or 3-scale).

Mimetic finite differences (Recent work by Brezzi, Lipnikov,
Shashkov, Simoncini).
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Mimetic idea

Let u, v be piecewise linear vector functions, and let v,u be the
corresponding vectors of the descrete velocities over the faces
in our grid, i.e.

vk =
1

|ek|

∫
ek

v(s) · n ds

Then the B in the mixed system satisfies∫
Ω
vTK−1u dx = vTBu

(
=
∑
E∈Ω

vEBEuE

)

The BE define discrete inner products.
Mimetic idea: Exchange BE with some ME that mimics some
properties of the continuous inner product.
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Conditions on the discrete inner product (Brezzi et. al.)

Let E be a polyhedron with faces ei, i = 1, . . . nE , and vE ,uE

be vectors of discrete velocities over the faces ei.
1 SPD and globally bounded: There exists s∗, S∗ such that

for every E

s∗|E|vT
EvE ≤ vT

EMEvE ≤ S∗|E|vT
EvE

2 Gauss-Green for linear pressure: Let p be linear on E, and
vE correspond to v = K∇p. Then for every uE :

vT
EMEuE +

∫
E
p

nE∑
i=1

|ei|uE,i dx =

nE∑
i=1

∫
ei

puE,i ds

∫
E

(K∇q)TK−1u dx+
∫

E
q∇ · u dx =

∫
∂E

quTn dS

Converges for very general polyhedral grids
(planar/moderately curved faces).
Convergence for strongly curved faces requires extra
degrees of freedom.
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Expressions for the inner product (Brezzi et. al.)

Let origo be the at the centroid of E, and define
(nE × d)-matrices N and R by

N(:, i) = nT
i , R(:, i) = |ei|cT

i ,

where ni and ci are the normal vector and centroid of face ei
respectively.
General family of ME satisfying (1)–(2):

ME =
1

|E|
RK−1RT + CUCT

nE × (nE − d)-matrix C spans null space of NT

U any SPD (kE − d)× (kE − d)-matrix.

Similar expression for the inverse family for direct use in the
hybrid formulation.
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Multiscale mixed FEM on corner point grids

Subdivision strategy:

Implicitly assumes each
face is piecewise planar.

Must split every
non-degenerate CP-cell in
six tetrahedrons.

Mimetic strategy:

Either assume faces
piecewise planar or
curved.

One degree of freedom
per moderately curved
CP-face.

Easy to deal with
non-matching faces.

The discrete inner product
can be used on the coarse
scale in conjuction with
any subgrid solver.
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Multiscale mixed FEM on corner point grids

Permeability:

Fine scale velocity:

Fine grid/Coarse grid-blocks

Multiscale velocity:
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