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Standard vs Multiscale

Standard method: Two-scale method:
Upscaled model: Geomodel
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Why multiscale?

Small scale variations in the permeability can have a strong
impact on large scale flow and should be resolved properly.

@ the pressure may be well resolved on a coarse grid

@ the fluid transport should be solved on the finest scale
possible
Thus: a multiscale method for the pressure equation should
provide velocity fields that can be used to simulate flow on a
fine scale.
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Model equations

Elliptic pressure equation: @ Total velocity:
v=—-AS)KVp V= Vo + Uy
V.-v=q

@ Total mobility:

Hyperbolic saturati tion:
ypernolic saturation equation \ = )\w(s) + )\O(S)

¢7 + V- (vf(S)) = qu = krw(S)/ tw + kro(S)/ o

@ Saturation water: S
@ Fractional flow water:

f(8) = Au(5)/A(S)
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Multiscale mixed finite elements

Mixed formulation:
Find (v, p) € Hy'™ x L? such that

_ 1.di
/(/\K) lu-vdx—/pv-udxzo, Vu € Hy ™",

/lV-vdﬂs:/qldaj, Vi e L.

Multiscale discretization:
Seek solutions in low-dimensional subspaces

U™ c Hy™and v e L2,

where local fine-scale properties are incorporated into the basis
functions.

v
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Discretisation matrices
B C v (f
ct o p)] \g

bij = /Q%T(/\K)_llbj dx

where

Cik = / OV -y dx
Q

Basis for pressure ¢: 1 in cell k, zero otherwise.
Basis for velocity ;:
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Multiscale basis functions for velocity

Each basis function ¢ is the solution of a local flow-problem
over two neighboring cells Ey, E;: i = —AKV ¢ with

forz e E
Vb = wi(). v g
—wy(x), forx e Ej,

with BCs ;- n =0 0n 8(Tl U F,-j U T])

Weights Wi, Wy-

L?"‘:’-— !',Z
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Multiscale mixed finite element methods

Key features for applications to reservoir simulation

SINTEF

Accuracy: flow scenarios match
closely fine grid simulations.

Mass conservation: the method
conserves mass on both the
coarse and the fine grid.

Efficiency: computation of basis
functions can be parallelized,
and is done only once
(moderate mobilty ratio).

Flexibility: unstructured and
irregular grids are handled
easily.
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Example: general coarse grid cells

Permeability field:

v
Grids:

Non-uniform grid, hexahedral cells Non-uniform grid, general cells General grid-cell
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Example: general coarse grids

Saturation plots:

Saturation-plot from reference solution Saturation-plot from coarse-grid solution

Watercut and saturation errors:

Relati
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What can be done for general subgrids?

@ Can use standard mixed FEM for many geometries. Will
need a bunch of mappings (Piola transforms) to a bunch of
reference elements.

@ Subdivision of elements into tetrahedra (2- or 3-scale).

@ Mimetic finite differences (Recent work by Brezzi, Lipnikov,
Shashkov, Simoncini).
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Let u, v be piecewise linear vector functions, and let v, u be the
corresponding vectors of the descrete velocities over the faces

in our grid, i.e.
il
vp=— [ v(s) -nds
|6k?| ek

Then the B in the mixed system satisfies

/ v K Y dz = v Bu (: Z vEBEuE>
Q

EeQ

The Bpg define discrete inner products.
Mimetic idea: Exchange Bg with some Mg that mimics some
properties of the continuous inner product.
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Conditions on the discrete inner product (Brezzi et. al.)

Let FE be a polyhedron with faces e¢;,i = 1,...ng, and vy, ug
be vectors of discrete velocities over the faces e;.
© SPD and globally bounded: There exists s,, S* such that
for every £

s*|E|U§UE < U%MEUE < S*|E|’U§UE

© Gauss-Green for linear pressure: Let p be linear on E, and
vg correspond to v = K'Vp. Then for every ug:

ng nE
v%MEuE+/pZ|ei|uE7i dx:Z/puEJ ds
E =1 i=1"¢i

[p(EVQ)T'K tude + [, qV -ude = [, qu'ndS

@ Converges for very general polyhedral grids
(planar/moderately curved faces).

@ Convergence for strongly curved faces requires extra

degrees of freedom.
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Expressions for the inner product (Brezzi et. al.)

Let origo be the at the centroid of E, and define
(ng x d)-matrices N and R by

N(yi)=nr,  R(,i) = |e]c],

where n; and ¢; are the normal vector and centroid of face e¢;
respectively.
General family of Mg satisfying (1)—(2):

1

Mg = ERK’lRT +couc”

@ ng x (ng — d)-matrix C spans null space of N7
@ U any SPD (kg — d) x (kg — d)-matrix.

Similar expression for the inverse family for direct use in the
hybrid formulation.
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Multiscale mixed FEM on corner point grids

Mimetic strategy:
@ Either assume faces
piecewise planar or
curved.

@ One degree of freedom
per moderately curved

Subdivision strategy: CP-face.
@ Implicitly assumes each o Easy to deal with
face is piecewise planar. non-matching faces.
@ Must split every @ The discrete inner product
non-degenerate CP-cell in can be used on the coarse
six tetrahedrons. scale in conjuction with

any subgrid solver.
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Multiscale mixed FEM on corner point grids

Permeability: Fine grid/Coarse grid-blocks
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