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Multiscale methods for reservoir simulation

Multiscale methods for reservoir simulation:
@ Multiscale finite volume method
@ Multiscale mixed finite element method

@ Upscaling-downscaling approaches based on nested gridding
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Key idea:
Capture subgrid effects on coarse grids, and allow
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Multiscale methods for reservoir simulation

Multiscale methods for reservoir simulation:
@ Multiscale finite volume method
@ Multiscale mixed finite element method

@ Upscaling-downscaling approaches based on nested gridding

Key idea:
Capture subgrid effects on coarse grids, and allow
reconstruction of velocity fields on underlying fine grids

Primary applications:
@ Perform simulations on non-upscaled geological models

@ Perform simulations on coarse grid models with complex
geometrical features and/or complex grid block geometries
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Prerequisites for real-field simulation studies

Prerequisite I: Applicable
Ability to handle unstructured industry standard geomodel grids.

v

Prerequisite Il: Efficient

More efficient / more easily parallelizable / less memory
requirements than fine grid solvers.

Prerequisite 111: Better than upscaling

More accurate / less complex than upscaling based strategies.
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Industry standard geomodel grids |: Corner-point grid

@ Grid-cell corner-points lie on inclined pillars (lines).
@ Layers may collapse to a hyperplane in certain regions.

@ Non-collapsed cells have polyhedral shape with 5 — 8 corners.

In physical space, corner-point grids are unstructured!
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Industry standard geomodel grids Il: PEBI grid

@ Voronoi grid: Each cell is a convex polyhedron P associated
with a point p € P such that if z € P, then x is closer to p
than any other point in P.

o PEBI grid: Voronoi grid where the line that connects two

neighboring points is perpendicular to the interface between
the two corresponding Voronoi cells.
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Multiscale mixed finite element method
Model problem

Consider the following model problem

Darcy’s law: v=—k(Vp—pgVD),
Mass balance: V-v=gq inf,
Boundary conditions: v-n=0 on 0.

The multiscale structure of porous media enters the equations
through the absolute permeability &, which is a symmetric and
positive definite tensor with uniform upper and lower bounds.

We will refer to p as pressure and v as velocity.
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Multiscale mixed finite element method

The mixed formulation

Mixed finite element methods

In mixed FEMs one seeks v € V' and p € U such that

/k:_lv-udx—/pv-udx = /k_lngD-udx Yu €V,
Q Q Q

/lV-vd:p = /qldm Vi eU.
Q Q

Here V.Cc {v e (I?)?:V-v € L? v-n=00n0Q} and U C L2

v
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Multiscale mixed finite element method

The mixed formulation

Mixed finite element methods
In mixed FEMs one seeks v € V' and p € U such that

/k:_lv-udx—/pv-udx = /k_lngD-udx Yu €V,
Q Q Q

/lV-vd:p = /qldm Vi eU.
Q Q

Here V.Cc {v e (I?)?:V-v € L? v-n=00n0Q} and U C L2

Multiscale mixed finite element method (MsMFEM)

V' designed to embody the impact of fine scale structures.
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Multiscale mixed finite element method

Basis functions

Associate a basis function X, for pressure with each grid block K:

1 ifze Ky,

U =span{xm : K, € K} where 1y, =
0 else,

and a velocity basis function 1;; with each interface 0K; N 0K :

V. = span{y; = —kV¢;;}

wij -n = 0on 8(KZ~UKj)

Vo — { q(K;)  in K,

—q(Kj) in Kj.
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Multiscale mixed finite element method

Coarse grids are obtained by up-gridding

MsMFEMs allows fully automated coarse gridding strategies: grid
blocks need to be connected, but can have arbitrary shapes. }

Uniform up-gridding: grid blocks are shoe-boxes in index space. J
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Multiscale mixed finite element method

Computing velocity basis functions

MsMFEM requires that a conservative numerical method is used to
compute velocity basis functions.
Corner-point grid:

@ TPFA or MPFA finite volume methods

o MFEM on tetrahedral subgrid of corner-point grid

@ Mimetic finite difference method

PEBI grid:
@ TPFA finite volume method

@ Mimetic finite difference method

Given a subgrid discretization technique, MsMFEM applies!
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Prerequisite Il: Reduced computational complexity

Time t(n) to solve a linear system of dimension n: t(n) ~ O(n®). )
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Cost of subgrid computations vs. coarse grid computations

MsFVM = Multiscale finite volume method (Jenny et al.)
NSUM = Numerical subgrid upscaling method (Arbogast et al.)
ALGUNG = Adaptive local-global upscaling + Nested gridding
downscaling (Chen and Durlofsky)
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Why MsMs offer significant savings in computation time

Efficiency
The pressure equation generally needs to be solved multiple times.

@ Basis functions are computed only once.

Parallelization
Multiscale methods are easy to parallelize.

@ Basis functions can be computed and processed independently.

Memory requirements
No need to store global fine-grid geomodel in memory.
@ Fine-grid data can be distributed or loaded in patches.

@ Solution of coarse grid system is requires significantly less
memory than solution of global fine-grid system.
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Prerequisite Ill: Multiscale methods versus upscaling

Cartesian coarse grids

Cartesian coarse grids: MsMs tend to give enhanced accuracy
only if simulations are performed on a subgrid of the coarse grid. J
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Saturation errors relative to a reference solution.
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MsMFEM versus upscaling on complex coarse grids

Up-gridded corner-point grids

Complex coarse grid-block geometries: MsMFEM is more
accurate than upscaling, also for coarse grid simulation.
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Corner-point grid model with layered log-normal geostatistics.
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Prerequisites for real-field simulation
Checklist for MsMFEM

v/ Handles industry standard geological models.

\/ Offers significant savings in computation time, is easier to
parallelize, and requires less memory than fine grid solvers.

\/ Provides a more robust and flexible alternative to upscaling.

\/ Provides a tool to perform reservoir simulation studies directly
on large geological models.
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Prerequisites for real-field simulation
Checklist for MsMFEM

v/ Handles industry standard geological models.

\/ Offers significant savings in computation time, is easier to
parallelize, and requires less memory than fine grid solvers.

\/ Provides a more robust and flexible alternative to upscaling.

\/ Provides a tool to perform reservoir simulation studies directly
on large geological models. Valid option?
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Multiscale methods for high-resolution simulation studies

Reservoir simulation applications

High-resolution: Geomodels with multi-million cells and more.

Current high-resolution simulation applications for MsMFEM:
@ A validation tool for geomodeling.
@ Visualization of flow patterns and injector-producer pairs.

@ History matching on moderate sized geomodels (~ 10° cells).

MsMFEM + streamline methods have been used to history match a geomodel with 32 injectors, 69
producers, and approximately 1 million cells.

Applications that are currently out of bound:

@ History matching on very large geomodels.

o Flows strongly influenced by capillary forces.
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Multiscale methods for high-resolution simulation studies

A tool for validation and visualization

High-resolution simulations require simplifying assumptions:
@ Capillary forces are negligible.
@ Gravity forces can be handled by operator splitting.

Options for modeling transport:
@ Streamline methods — efficiency decays for compressible
flows, and when frequent pressure updates are needed.

o Implicit upstream schemes — can be made as efficient as
streamline methods, and are more generic.
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How to make implicit upstream schemes efficient

Topological sort

By arranging cells in a directed graph, systems that arise from
implicit upstream schemes can be solved using a sequential
cell-by-cell Newton iteration.

SINTEF

Applied Mathematics =} 18/21



How to make implicit upstream schemes efficient

Topological sort

By arranging cells in a directed graph, systems that arise from
implicit upstream schemes can be solved using a sequential
cell-by-cell Newton iteration.

Key features
System with n unknowns solved in O(n) operations.

Cell-wise newton iterations.

°

°

@ “No" grid restrictions.

@ Low memory requirements.
°

Easy to parallelize.
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Example |: Comparison with streamline methods

Model 2 of the Tenth SPE Comparative Solution Project*: 1.122 million grid cells

Water-cut curves for each producer computed with first-order
upwind scheme (solid line) and FrontSim (dashed line).

4
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At=1 day: 40 minutes. At=20 days: 2 minutes

Computer: AMD Athlon 64 X2 dual core processor (2 x 2.2 GHz).

*Christie and Blunt: Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques
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Example |I: Compartmentalization of reservoir

MsMFEM and topological sorting routine

— also applicable to compartmentalize reservoirs:

1 for each cell perforated by injector i,
v-VC; = ]
0 otherwise.

Model 2 of the Tenth SPE Comparative Solution Project
|

@ SINTEF Applied Mathematics 20/21



Conclusions and outlook

Status:
MsMFEM is a robust and versatile tool for reservoir simulation.

Aim:
An efficient and seamless methodology for oil reservoir simulation:

@ Simulations with user-defined resolution and accuracy.

Road Ahead:
Further validation, more complex physics, and history matching.

@ SINTEF Applied Mathematics . . e o 21/21



	Multiscale methods and their application to reservoir simulation
	Prerequisites for using multiscale methods to perform simulation studies on real-field geological models

	Multiscale mixed finite element method
	Coarse grid formulation
	Generating coarse grids by up-gridding
	Discretization on underlying geomodel grids


