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The GeoScale Project Portifolio

Vision:
Direct simulation of fluid flow on high-resolution geomodels of
highly heterogeneous and fractured porous media in 3D.

Research keywords:
e multiscale methods, upscaling/downscaling
@ robust discretisations of pressure equations
@ fast simulation of fluid transport
Contact:
http://www.math.sintef.no/geoscale/
Knut-Andreas.Lie@sintef.no
+47 22 06 77 10 / +47 930 58 721
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GeoScale Portifolio — A Collaborative Effort

Partners:
e SINTEF
@ Universities of Bergen, Oslo, and Trondheim
@ Schlumberger, Shell, Statoil
Education:
4-5 PhD grants (RCN, UoB, NTNU, Shell)
4 postdoc grants (RCN, EU, Schlumberger)
2 master students
Collaboration:
Stanford, Texas A&M, Umed
Schlumberger Moscow Research, Statoil Research Centre
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Simulation on Geological Models

For various reasons, there is a need for
direct simulation on high-resolution
geomodels. This is difficult:
@ K spans many length scales and
has multiscale structure

max K/ min K ~ 103-10%°

@ Details on all scales impact flow

Gap between simulation models and geomodels:
o High-resolution geomodels may have 107 — 10° cells
e Conventional simulators are capable of about 10° — 10° cells

(=] 4/20

@ SINTEF Applied Mathematics . g B May 2006



Applications for fast (and lightweight) simulators for :
@ direct simulation of large geomodels
@ multiple realisations
@ history-matching

Long-term collaboration with Schlumberger:

@ Petrel workflow tools

@ FrontSim streamline simulator
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Developing More Robust Discretisations

Accurate simulation on industry-standard grid models is
challenging!

Skew and deformed grid .
i Non-matching cells:
blocks:

e U
O \4

Our approach: finite elements and/or mimetic methods

SINTEF

Applied Mathematics May 2006 < O 6/20



Developing an Alternative to Upscaling

We seek a methodology that:

@ gives a detailed image of the flow pattern on the fine scale,
without having to solve the full fine-scale system

@ is robust and flexible with respect to the coarse grid

@ is robust and flexible with respect to the fine grid and the
fine-grid solver

@ is accurate and conservative

@ is fast and easy to parallelise
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From Upscaling to Multiscale Methods

Standard upscaling:
r.

BLE
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From Upscaling to Multiscale Methods

Standard upscaling:
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From Upscaling to Multiscale Methods

Standard upscaling: Multiscale method:
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From Upscaling to Multiscale Methods

Standard upscaling:

Coarse grid blocks:
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From Upscaling to Multiscale Methods

Standard upscaling: Multiscale method:
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Advantage: Accuracy
10th SPE Comparative Solution Project

@ Geomodel: 60 x 220 x 85 ~ 1,1 million grid cells
@ Simulation: 2000 days of production
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Advantage: Accuracy

SPE10 Benchmark (5 x 11 x 17 Coarse Grid)

Producer A Producer B
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Nested gridding: upscaling + downscaling
SINTEF

Applied Mathematics May 2006 « O 10/20



Advantage: Robustness

SPE10, Layer 85 (60 x 220 Grid)

Logarithm of horizontal permeability Reference saturation profile

o o N ok

MsMFEM saturation profile

Coarse grid (6 x 22) saturation profile MsMFEM saturation profile

1.2

Coarse grid (3 x 11) saturation profile
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Computational Complexity

Direct solution may be more efficient, so why bother with multiscale?

e Full simulation: O(10?) time

steps. T
@ Basis functions need not be
recomputed
Also:
@ Possible to solve very large
problems

o Easy parallelization

SINTEF
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Bx8x8

Fine scale solution

I Computation of basis functions
I Solution of global system
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16x16x16

32x32x32 64x64x64
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Flexibility

Multiscale mixed formulation:
coarse grid = union of cells in fine grid

@ Given a numerical method that
works on the fine grid, the
implementation is straightforward.

@ One avoids resampling when going
from fine to coarse grid, and vice
versa

Other formulations:

Finite-volume methods: based upon dual grid — special cases
that complicate the implementation in the presence of faults, local
refinements, etc.
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Flexibility wrt. Grids

Around Flow Barriers, Fractures, etc

ey ey
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Non-uniform grid, hexahedral cells Non-uniform grid, general cells General grid-cell
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Grid model courtesy of M. Karimi-Fard, Stanford

SINTEF

1

17/20

[m]

May 2006

S
1o}
=
o
=
o
o
<




Fast Simulation of Fluid Transport

@ discontinuous Galerkin @ multiphase transport
@ reordering @ tracer flow
@ large time-steps @ delineation of volumes
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3 eamline Simulation

(Figures by Yann Gautier)

Permeability field Solve pressure Evolve compositions

Initial compositions Trace streamlines Map compositions
and new time step
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Multiscale methods

Well models (adaptive gridding, multilaterals)
More general grids (block-structured, PEBI, ..)
Compressibility, multiphase and multicomponent
Adaptivity

]
]
]
@ Fractures and faults )

Applications:
@ Multiscale history matching
@ Carbonate reservoirs..?
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